PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Immunoglobulin G (IgG) Class, but Not IgA or IgM, Antibodies to Peptides of the Porphyromonas gingivalis Chaperone HtpG Predict Health in Subjects with Periodontitis by a Fluorescence Enzyme-Linked Immunosorbent Assay▿  
Clinical and Vaccine Immunology : CVI  2009;16(12):1766-1773.
Chaperones are molecules found in all cells and are critical in stabilization of synthesized proteins, in repair/removal of defective proteins, and as immunodominant antigens in innate and adaptive immunity. Subjects with gingivitis colonized by the oral pathogen Porphyromonas gingivalis previously demonstrated levels of anti-human chaperone Hsp90 that were highest in individuals with the best oral health. We hypothesized that similar antibodies to pathogen chaperones might be protective in periodontitis. This study examined the relationship between antibodies to P. gingivalis HtpG and clinical statuses of healthy and periodontitis-susceptible subjects. We measured the humoral responses (immunoglobulin G [IgG], IgA, and IgM) to peptides of a unique insert (P18) found in Bacteroidaceae HtpG by using a high-throughput, quantitative fluorescence enzyme-linked immunosorbent assay. Indeed, higher levels of IgG class anti-P. gingivalis HtpG P18 peptide (P < 0.05) and P18α, consisting of the N-terminal 16 amino acids of P18 (P < 0.05), were associated with better oral health; these results were opposite of those found with anti-P. gingivalis whole-cell antibodies and levels of the bacterium in the subgingival biofilm. When we examined the same sera for IgA and IgM class antibodies, we found no significant relationship to subject clinical status. The relationship between anti-P18 levels and clinical populations and individual subjects was found to be improved when we normalized the anti-P18α values to those for anti-P18γ (the central 16 amino acids of P18). That same ratio correlated with the improvement in tissue attachment gain after treatment (P < 0.05). We suggest that anti-P. gingivalis HtpG P18α antibodies are protective in periodontal disease and may have prognostic value for guidance of individual patient treatment.
doi:10.1128/CVI.00272-09
PMCID: PMC2786377  PMID: 19793900
2.  Oral Chlamydia trachomatis in Patients with Established Periodontitis 
Clinical oral investigations  2000;4(4):226-232.
Periodontitis is considered a consequence of a pathogenic microbial infection at the periodontal site and host susceptibility factors. Periodontal research supports the association of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Bacteroides forsythus, and periodontitis; however causality has not been demonstrated. In pursuit of the etiology of periodontitis, we hypothesized that the intracellular bacteria, Chlamydia trachomatis, may play a role. As a first step, a cross-sectional study of dental school clinic patients with established periodontitis were assessed for the presence of C. trachomatis in the oral cavity, and in particular from the lining epithelium of periodontal sites. C. trachomatis was detected using a direct fluorescent monoclonal antibody (DFA) in oral specimens from 7% (6/87) of the patients. Four patients tested positive in specimens from the lining epithelium of diseased periodontal sites, one patient tested positive in healthy periodontal sites, and one patient tested positive in the general mucosal specimen. In conclusion, this study provides preliminary evidence of C. trachomatis in the periodontal sites. Planned studies include the use of a more precise periodontal epithelial cell collection device, the newer nucleic acid amplification techniques to detect C. trachomatis, and additional populations to determine the association of C. trachomatis and periodontitis.
PMCID: PMC2760468  PMID: 11218493
Chlamydia; Chlamydia trachomatis; Fluorescent antibody technique; Periodontal diseases; Periodontitis
3.  Induction of β-Defensin Resistance in the Oral Anaerobe Porphyromonas gingivalis 
Induction of resistance of oral anaerobes to the effects of human β-defensin 1 (hβD-1) to hβD-4 was investigated by pretreating cells with either sublethal levels of defensins or environmental factors, followed by a challenge with lethal levels of defensins. Cultures of Porphyromonas gingivalis were (i) pretreated with defensins at 1 ng/ml, (ii) heated to 42°C (heat stress), (iii) exposed to normal atmosphere (oxidative stress), or (iv) exposed to 1 mM hydrogen peroxide (peroxide stress). Samples (10 μl) were distributed among the wells of sterile 384-well plates containing hβD-1 to -4 (100 μg/ml). Plates were incubated at 37°C for 36 h in an anaerobe chamber. Growth inhibition was determined by a system that measures the total nucleic acid of a sample with a DNA binding dye. The MICs of the four defensins for P. gingivalis were 3 to 12 μg/ml. We found that sublethal levels of the defensins and heat and peroxide stress, but not oxidative stress, induced resistance to 100 μg of defensin per ml in P. gingivalis. Resistance induced by sublethal levels of hβD-2 lasted 90 min, and the resistance induced by each defensin was effective against the other three. Multiple strains exposed to hβD-2 all evidenced resistance induction. Defensin resistance is vital to the pathogenic potential of several human pathogens. This is the first report describing the induction of defensin resistance in the oral periodontal pathogen P. gingivalis. Such resistance may have an effect on the ability of oral pathogens to persist in the mouth and to withstand innate human immunity.
doi:10.1128/AAC.49.1.183-187.2005
PMCID: PMC538855  PMID: 15616294
4.  Characterization of Heat-Inducible Expression and Cloning of HtpG (Hsp90 Homologue) of Porphyromonas gingivalis 
Infection and Immunity  2000;68(4):1980-1987.
Porphyromonas gingivalis is implicated in the etiology of periodontal disease. Associations between microbial virulence and stress protein expression have been identified in other infections. For example, Hsp90 homologues in several microbial species have been shown to contribute to virulence. We previously reported that P. gingivalis possessed an Hsp90 homologue (HtpG) which cross-reacts with human Hsp90. In addition, we found that elevated levels of serum antibody to Hsp90 stress protein in individuals colonized with this microorganism were associated with periodontal health. However, the role of HtpG in P. gingivalis has not been explored. Therefore, we cloned the htpG gene and investigated the characteristics of HtpG localization and expression in P. gingivalis. htpG exists as a single gene of 2,052 bp from which a single message encoding a mature protein of approximately 68 kDa is transcribed. Western blot analysis revealed that the 68-kDa polypeptide was stress inducible and that a major band at 44 kDa and a minor band at 40 kDa were present at constitutive levels. Cellular localization studies revealed that the 44- and 40-kDa species were associated with membrane and vesicle fractions, while the 68-kDa polypeptide was localized to the cytosolic fractions.
PMCID: PMC97376  PMID: 10722592
5.  Serum Antibodies to Porphyromonas gingivalis Chaperone HtpG Predict Health in Periodontitis Susceptible Patients 
PLoS ONE  2008;3(4):e1984.
Background
Chaperones are ubiquitous conserved proteins critical in stabilization of new proteins, repair/removal of defective proteins and immunodominant antigens in innate and adaptive immunity. Periodontal disease is a chronic inflammatory infection associated with infection by Porphyromonas gingivalis that culminates in the destruction of the supporting structures of the teeth. We previously reported studies of serum antibodies reactive with the human chaperone Hsp90 in gingivitis, a reversible form of gingival disease confined to the oral soft tissues. In those studies, antibodies were at their highest levels in subjects with the best oral health. We hypothesized that antibodies to the HSP90 homologue of P. gingivalis (HtpG) might be associated with protection/resistance against destructive periodontitis.
Methodology/Principal Findings
ELISA assays using cloned HtpG and peptide antigens confirmed gingivitis subjects colonized with P. gingivalis had higher serum levels of anti-HtpG and, concomitantly, lower levels of attachment loss. Additionally, serum antibody levels to P. gingivalis HtpG protein were higher in healthy subjects compared to patients with either chronic or aggressive periodontitis. We found a negative association between tooth attachment loss and anti-P. gingivalis HtpG (p = 0.043) but not anti-Fusobacterium nucleatum (an oral opportunistic commensal) HtpG levels. Furthermore, response to periodontal therapy was more successful in subjects having higher levels of anti-P. gingivalis HtpG before treatment (p = 0.018). There was no similar relationship to anti-F. nucleatum HtpG levels. Similar results were obtained when these experiments were repeated with a synthetic peptide of a region of P. gingivalis HtpG.
Conclusions/Significance
Our results suggest: 1) anti-P. gingivalis HtpG antibodies are protective and therefore predict health periodontitis-susceptable patients; 2) may augment the host defence to periodontitis and 3) a unique peptide of P. gingivalis HtpG offers significant potential as an effective diagnostic target and vaccine candidate. These results are compatible with a novel immune control mechanism unrelated to direct binding of bacteria.
doi:10.1371/journal.pone.0001984
PMCID: PMC2291562  PMID: 18431474

Results 1-5 (5)