Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Quantitative Comparison of HTLV-1 and HIV-1 Cell-to-Cell Infection with New Replication Dependent Vectors 
PLoS Pathogens  2010;6(2):e1000788.
We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background. Reporter gene expression was detected exclusively in target cells and required an Env-expression plasmid and a viral packaging vector, which provided essential structural and enzymatic proteins for virus replication. Cell-cell fusion did not contribute to infection, as reporter protein was rarely detected in syncytia. Coculture of transfected Jurkat T cells and target Raji/CD4 B cells enhanced HIV-1 infection two fold and HTLV-1 infection ten thousand fold in comparison with cell-free infection of Raji/CD4 cells. Agents that interfere with actin and tubulin polymerization strongly inhibited HTLV-1 and modestly decreased HIV-1 cell-to-cell infection, an indication that cytoskeletal remodeling was more important for HTLV-1 transmission. Time course studies showed that HTLV-1 transmission occurred very rapidly after cell mixing, whereas slower kinetics of HIV-1 coculture infection implies a different mechanism of infectious transmission. HTLV-1 Tax was demonstrated to play an important role in altering cell-cell interactions that enhance virus infection and replication. Interestingly, superantigen-induced synapses between Jurkat cells and Raji/CD4 cells did not enhance infection for either HTLV-1 or HIV-1. In general, the dependence on cell-to-cell infection was determined by the virus, the effector and target cell types, and by the nature of the cell-cell interaction.
Author Summary
Cell-free virus particles released from infected cells can be transmitted to target cells by diffusion or may be conveyed directly to target cells via specific intercellular contacts; the latter is referred to as cell-to-cell infection. Microscopic imaging has shown how viral proteins and virus particles move within and between cells, accumulating at sites of cell-cell contact. While we suspect that these images represent virus infection, it has been difficult to accurately quantify virus replication and provirus formation in most cell-to-cell infection experiments. Retroviral vectors that encode reporter proteins have been invaluable tools for analyzing retrovirus replication and restriction, but they have had limited utility in cell-to-cell infection studies due to high background noise resulting from reporter expression in the producer cells. We report the construction and characterization of retroviral vectors that express reporter protein exclusively in target cells and only after completing a full replication cycle. We have validated this approach and have begun to analyze cell and virus determinants for cell-to-cell infection with vectors for two human retroviruses that infect T cells. We show that the mechanism of transmission and ensuing virus replication depend on the particular virus, the effector and target cell types, and on the specific type of cell-cell interaction.
PMCID: PMC2829072  PMID: 20195464
2.  Interactions of Murine APOBEC3 and Human APOBEC3G with Murine Leukemia Viruses▿  
Journal of Virology  2008;82(13):6566-6575.
APOBEC3 proteins are cytidine deaminases which help defend cells against retroviral infections. One antiviral mechanism involves deaminating dC residues in minus-strand DNA during reverse transcription, resulting in G-to-A mutations in the coding strand. We investigated the effects of mouse APOBEC3 (mA3) and human APOBEC3G (hA3G) upon Moloney murine leukemia virus (MLV). We find that mA3 inactivates MLV but is significantly less effective against MLV than is hA3G. In contrast, mA3 is as potent against human immunodeficiency virus type 1 (HIV-1, lacking the protective Vif protein) as is hA3G. The two APOBEC3 proteins are packaged to similar extents in MLV particles. Dose-response profiles imply that a single APOBEC3 molecule (or oligomer) is sufficient to inactivate an MLV particle. The inactivation of MLV by mA3 and hA3G is accompanied by relatively small reductions in the amount of viral DNA in infected cells. Although hA3G induces significant levels of G-to-A mutations in both MLV and HIV DNAs, and mA3 induces these mutations in HIV DNA, no such mutations were detected in DNA synthesized by MLV inactivated by mA3. Thus, MLV has apparently evolved to partially resist the antiviral effects of mA3 and to totally resist the ability of mA3 to induce G-to-A mutation in viral DNA. Unlike the resistance of HIV-1 and human T-cell leukemia virus type 1 to hA3G, the resistance of MLV to mA3 is not mediated by the exclusion of APOBEC from the virus particle. The nature of its resistance and the mechanism of inactivation of MLV by mA3 are completely unknown.
PMCID: PMC2447093  PMID: 18448535
3.  The Role of WWP1-Gag Interaction and Gag Ubiquitination in Assembly and Release of Human T-Cell Leukemia Virus Type 1▿  
Journal of Virology  2007;81(18):9769-9777.
The PPPY motif in the matrix (MA) domain of human T-cell leukemia virus type 1 (HTLV-1) Gag associates with WWP1, a member of the HECT domain containing family of E3 ubiquitin ligases. Mutation of the PPPY motif arrests particle assembly at an early stage and abolishes ubiquitination of MA. Similar effects are seen when Gag is expressed in the presence of a truncated form of WWP1 that lacks the catalytically active HECT domain (C2WW). To understand the role of ubiquitination in budding, we mutated the four lysines in MA to arginines and identified lysine 74 as the unique site of ubiquitination. Virus-like particles produced by the K74R mutant did not contain ubiquitinated MA and showed a fourfold reduction in the release of infectious particles. Furthermore, the K74R mutation rendered assembly hypersensitive to C2WW inhibition; K74R Gag budding was inhibited at significantly lower levels of expression of C2WW compared with wild-type Gag. This finding indicates that the interaction between Gag and WWP1 is required for functions other than Gag ubiquitination. Additionally, we show that the PPPY− mutant Gag exerts a strong dominant-negative effect on the budding of wild-type Gag, further supporting the importance of recruitment of WWP1 to achieve particle assembly.
PMCID: PMC2045422  PMID: 17609263
4.  Phenotypic and Genotypic Comparisons of Human T-Cell Leukemia Virus Type 1 Reverse Transcriptases from Infected T-Cell Lines and Patient Samples▿  
Journal of Virology  2007;81(9):4422-4428.
It is well established that cell-free infection with human T-cell leukemia virus type 1 (HTLV-1) is less efficient than that with other retroviruses, though the specific infectivities of only a limited number of HTLV-1 isolates have been quantified. Earlier work indicated that a postentry step in the infectious cycle accounted for the poor cell-free infectivity of HTLV-1. To determine whether variations in the pol gene sequence correlated with virus infectivity, we sequenced and phenotypically tested pol genes from a variety of HTLV-1 isolates derived from primary sources, transformed cell lines, and molecular clones. The pol genes and deduced amino acid sequences from 23 proviruses were sequenced and compared with 14 previously published sequences, revealing a limited number of amino acid variations among isolates. The variations appeared to be randomly dispersed among primary isolates and proviruses from cell lines and molecular clones. In addition, there was no correlation between reverse transcriptase sequence and the disease phenotype of the original source of the virus isolate. HTLV-1 pol gene fragments encoding reverse transcriptase were amplified from a variety of isolates and were subcloned into HTLV-1 vectors for both single-cycle infection and spreading-infection assays. Vectors carrying pol genes that matched the consensus sequence had the highest titers, and those with the largest number of variations from the consensus had the lowest titers. The molecular clone from CS-1 cells had four amino acid differences from the consensus sequence and yielded infectious titers that were approximately eight times lower than those of vectors encoding a consensus reverse transcriptase.
PMCID: PMC1900182  PMID: 17287279
5.  Late Assembly Motifs of Human T-Cell Leukemia Virus Type 1 and Their Relative Roles in Particle Release 
Journal of Virology  2004;78(12):6636-6648.
Three late assembly domain consensus motifs, namely PTAP, PPPY, and LYPXL, have been identified in different retroviruses. They have been shown to interact with the cellular proteins TSG101, Nedd4, and AP2 or AIP, respectively. Human T-cell leukemia virus type 1 (HTLV-1) has a PPPY and a PTAP motif, separated by two amino acids, located at the end of MA, but only the PPPY motif is conserved in the deltaretrovirus group. Like other retroviral peptides carrying the late motif, MA is mono- or di-ubiquitinated. A mutational analysis showed that 90% of PPPY mutant particles were retained in the cell compared to 15% for the wild-type virus. Mutations of the PTAP motif resulted in a 20% decrease in particle release. In single-cycle infectivity assays, the infectious titers of late motif mutants correlated with the amounts of released virus, as determined by an enzyme-linked immunosorbent assay. We observed binding of MA to the WW domains of the Nedd4 family member WWP1 but not to the amino-terminal ubiquitin E2 variant domain of TSG101 in mammalian two-hybrid analyses. The binding to WWP1 was eliminated when the PPPY motif was mutated. However, MA showed binding to TSG101 in the yeast two-hybrid system that was dependent on an intact PTAP motif. A dominant-negative (DN) mutant of WWP1 could inhibit budding of the intact HTLV-1 virus. In contrast, DN TSG101 only affected the release of virus-like particles encoded by Gag expression plasmids. Electron and fluorescent microscopy showed that Gag accumulates in large patches in the membranes of cells expressing viruses with PPPY mutations. Very few tethered immature particles could be detected in these samples, suggesting that budding is impaired at an earlier step than in other retroviruses.
PMCID: PMC416494  PMID: 15163754
6.  A Novel Protease Processing Site in the Transframe Protein of Human T-Cell Leukemia Virus Type 1 PR76gag-pro Defines the N Terminus of RT 
Journal of Virology  2002;76(24):13101-13105.
The genomic RNA of human T-cell leukemia virus type 1 encodes three polyproteins, Gag, Gag-Pro, and Gag-Pro-Pol, which are translated as a result of no, one, and two frameshifts, respectively. In this report we demonstrate that the 77 residues encoded at the C terminus of the Gag-Pro precursor can be collectively detected as an 8-kDa transframe protein (TFP) in virions. Mutant viruses with a C-terminally truncated TFP (19, 32, or 50 residues) had essentially a wild-type phenotype in vitro. However, a virus mutant that encoded only the Gag and Gag-Pro-Pol polyproteins due to a mutation in the second frameshift site, and hence did not produce TFP, was noninfectious. Mutation analysis of the proteolytic cleavage site between PR and TFP revealed the presence of an additional site and the existence of a p1 peptide separating protease and TFP. While removal of the cleavage site at the PR-p1 junction had a modest effect on virus replication, mutation of the p1-TFP cleavage site led to noninfectious virus and the loss of reverse transcriptase activity. Determination of the amino-terminal sequence of a hemagglutinin-tagged RT demonstrated that the same site is used in processing the Gag-Pro-Pol precursor and thus defines the start of mature RT. Neither mutation alone or in combination caused changes in the amounts or processing patterns of the Gag polyprotein, indicating that protease is active independent of its C terminus.
PMCID: PMC136720  PMID: 12438640
7.  Examining Human T-Lymphotropic Virus Type 1 Infection and Replication by Cell-Free Infection with Recombinant Virus Vectors 
Journal of Virology  2001;75(18):8461-8468.
A sensitive and quantitative cell-free infection assay, utilizing recombinant human T-cell leukemia virus type 1 (HTLV-1)-based vectors, was developed in order to analyze early events in the virus replication cycle. Previous difficulties with the low infectivity and restricted expression of the virus have prevented a clear understanding of these events. Virus stocks were generated by transfecting cells with three plasmids: (i) a packaging plasmid encoding HTLV-1 structural and regulatory proteins, (ii) an HTLV-1 transfer vector containing either firefly luciferase or enhanced yellow fluorescent protein genes, and (iii) an envelope expression plasmid. Single-round infections were initiated by exposing target cells to filtered supernatants and quantified by assaying for luciferase activity in cell extracts or by enumerating transduced cells by flow cytometry. Transduction was dependent on reverse transcription and integration of the recombinant virus genome, as shown by the effects of the reverse transcriptase inhibitor 3′-azido-3′-deoxythymidine (AZT) and by mutation of the integrase gene in the packaging vector, respectively. The 50% inhibitory concentration of AZT was determined to be 30 nM in this HTLV-1 replication system. The stability of HTLV-1 particles, pseudotyped with either vesicular stomatitis virus G protein or HTLV-1 envelope, was typical of retroviruses, exhibiting a half-life of approximately 3.5 h at 37°C. The specific infectivity of recombinant HTLV-1 virions was at least 3 orders of magnitude lower than that of analogous HIV-1 particles, though both were pseudotyped with the same envelope. Thus, the low infectivity of HTLV-1 is determined in large part by properties of the core particle and by the efficiency of postentry processes.
PMCID: PMC115091  PMID: 11507191

Results 1-7 (7)