Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("livers, D")
1.  In vivo and in vitro studies on Anaplasma phagocytophilum infection of the myeloid cells of a patient with chronic myelogenous leukaemia and human granulocytic ehrlichiosis 
Journal of Clinical Pathology  2004;57(5):499-503.
Aims: The occurrence of human granulocytic ehrlichiosis (HGE) in a patient with chronic myelogenous leukaemia (CML) provided an opportunity to study whether Anaplasma phagocytophilum, the aetiological agent of HGE, infects mature or immature cells, both in vivo and in vitro.
Methods: Diagnosis of HGE was confirmed by culture, polymerase chain reaction (PCR), detection of intragranulocytic inclusions, and serology. The infection rates of different myelogenous stages of granulocytic differentiation were determined by microscopy. Anaplasma phagocytophilum infection of the bone marrow was analysed by PCR, culture, and microscopy. In addition, the in vitro growth of A phagocytophilum in the patient’s granulocytes and in HL-60 cells (a promyelocytic leukaemia cell line) was compared.
Results: Pretreatment blood smears showed that mature granulocytic cells had a higher infection rate with A phagocytophilum than did immature cells. In the original inoculation of the patient’s cells into HL-60 cells to isolate A phagocytophilum, the bacterium grew faster in the patient’s leukaemic cells than in HL-60 cells. Anaplasma phagocytophilum inclusions were rarely seen in bone marrow granulocytes and PCR was negative. In vitro, two A phagocytophilum isolates grew faster in the patient’s granulocytes than in HL-60 cells.
Conclusions: The superior growth in CML cells compared with HL-60 cells suggests that A phagocytophilum preferentially infects mature granulocytes. The higher infection rate of the patient’s mature versus immature granulocytes before treatment and the minimal level of infection of the patient’s bone marrow support this. It is possible that the primary site of infection in HGE is the peripheral mature granulocytic population.
PMCID: PMC1770287  PMID: 15113857
2.  Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. 
Journal of Clinical Microbiology  1996;34(5):1306-1309.
Ninety-three Borrelia burgdorferi isolates obtained from erythema migrans lesions or blood of Lyme disease patients in Westchester County, N.Y., between 1991 and 1994 were characterized by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the 16S-23S rRNA gene spacer. All isolates could be classified into three distinct RFLP types. Among the 82 skin biopsy isolates studied, 21 (25.6%) were type 1, 37 (45.1%) were type 2, and 21 (25.6%) were type 3. Three (3.7%) cultures contained a mixture of two isolates with distinct RFLP types. The 11 isolates cultured from blood showed a similar predominance of RFLP type 2 (6 of 11; 54.5%) relative to types 1 (2 of 11; 18.2%) and 3 (3 of 11; 27.3%). For one patient both skin and blood isolates were cultured, and RFLP analysis revealed that these isolates differed from one another. This study demonstrates that there is genotypic heterogeneity in B. burgdorferi strains infecting Lyme disease patients, and this typing approach may allow differentiation of isolates with various degrees of pathogenic potential.
PMCID: PMC229006  PMID: 8727927
3.  Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. 
Journal of Clinical Microbiology  1995;33(9):2427-2434.
Borrelia spp. associated with Lyme disease possess an rRNA gene organization consisting of a single 16S rRNA gene followed by a spacer of several kilobases and a tandem repeat of a 23S (rrl)-5S (rrf) rRNA gene cluster. The restriction fragment length polymorphism (RFLP) patterns for these genes have been widely used to classify Lyme disease spirochete isolates. We analyzed the rRNA gene organization and sequences for two Ixodes ovatus isolates from Japan (IKA2 and HO14) and two group 21038 isolates associated with Ixodes dentatus ticks or rabbits from North America (isolates 21038 and 19857). This analysis revealed unique polymorphisms not previously described in other Lyme disease spirochete isolates. The molecular basis of these polymorphisms was determined by Southern blotting and PCR analyses. Only one continuous copy of the rrl-rrf gene cluster was identified in isolates IKA2, 19857, and 21038. The second rrl-rrf gene cluster is entirely absent from the IKA2 genome. In isolates 19857 and 21038, an intervening sequence is present, resulting in a fragment rrlB gene. The insertion site of this intervening sequence element differed in each isolate. While isolates 19857 and 21038 were found to carry a fragmented rrlB gene, they lacked rrfB. To determine if these rRNA polymorphisms were indicative of an underlying phylogenetic divergence, sequence analysis of the 16S rRNA (rrs) genes was conducted. The phylogenies inferred from rrs sequence analysis suggest that the polymorphisms resulted from recent mutational events.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID: PMC228430  PMID: 7494041
4.  rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. 
Journal of Bacteriology  1995;177(14):4152-4156.
Here we present evidence that only five of the seven rRNA operons present in Escherichia coli are necessary to support near-optimal growth on complex media. Seven rrn operons are necessary, however, for rapid adaptation to nutrient and temperature changes, suggesting it is the ability to adapt quickly to changing environmental conditions that has provided the selective pressure for the persistence of seven rrn operons in E. coli. We have also found that one consequence of rrn operon inactivation is a miscoordination of the concentrations of initiation factor IF3 and ribosomes.
PMCID: PMC177152  PMID: 7608093
5.  Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. 
Journal of Clinical Microbiology  1995;33(3):589-595.
The etiologic agent of Lyme borreliosis, Borrelia burgdorferi sensu lato, has been isolated from many biologic sources in North America and Eurasia, and isolates have been divided into three distinct genospecies (B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii). In order to explore the possible association of genospecies with disease manifestation, 60 isolates of B. burgdorferi sensu lato were subjected to 5S rDNA-linked restriction fragment length polymorphism (RFLP) analysis. The results confirmed earlier studies which indicated that virtually all North American isolates are B. burgdorferi sensu stricto, whereas Eurasian strains fall into all three genospecies. Thirty-five isolates were further characterized by PCR amplification of a region of the 16S-23S rDNA spacer and HinfI digestion of the products. This method resulted in the subdivision of B. burgdorferi sensu stricto into two distinct PCR-RFLP types. In contrast, B. garinii isolates all displayed an identical pattern. Additionally, a number of previously unclassified North American isolates (25015, DN127, 19857, 24330) showed distinctively different PCR-RFLP patterns. The application of this method for the typing of uncultured B. burgdorferi directly in biologic samples was demonstrated by analysis of several field-collected Ixodes scapularis tick specimens. The described PCR-RFLP technique should allow for the direct and rapid molecular typing of B. burgdorferi-containing samples and facilitate studies of the relationship between spirochete genotype and clinical disease.
PMCID: PMC227995  PMID: 7751362
6.  Growth rate regulation of translation initiation factor IF3 biosynthesis in Escherichia coli. 
Journal of Bacteriology  1991;173(12):3888-3893.
infC, the gene encoding translation initiation factor IF3 in Escherichia coli, can be transcribed from three promoters. Two of these promoters, PI1 and PI2, are located in the upstream thrS sequence which codes for threonyl-tRNA synthetase. Previous studies had shown that PI2 was the major promoter for infC. In the present study, the extent of transcription from PI1 and/or PI2 at a variety of steady-state growth rates was analyzed by promoter fusion studies. PI2 was the more active promoter (two- to threefold stronger than PI1) at all growth rates tested. A fusion plasmid containing both PI1 and PI2 exhibited a transcription level approximately equal to the sum of those observed with the fusion plasmids containing the individual promoters. The transcriptional activities of PI1 and PI2 did not change as the growth rate was varied from 0.3 to 1.7 doublings per h. In contrast, a fusion plasmid carrying the rrnB P1 promoter displayed the expected growth rate response. The steady-state concentrations of infC mRNA in cells grown at different rates were measured and found not to vary. These results indicate that the previously reported growth rate regulation of IF3 biosynthesis neither is accomplished by transcriptional control nor is a result of differential mRNA stability. In view of these results, the steady-state levels of IF3 in cells grown at a number of different growth rates were determined by quantitative immunoblotting. IF3 levels were found to vary with growth rate in a manner essentially identical to that observed for ribosomes. A model accounting for these results and describing a mechanism for coordinate growth rate-regulated expression of ribosomes and IF3 is presented.
PMCID: PMC208021  PMID: 2050639

Results 1-6 (6)