PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Concerted actions of the catechol O-methyltransferase and the cytosolic sulfotransferase SULT1A3 in the metabolism of catecholic drugs 
Biochemical pharmacology  2012;84(9):1186-1195.
Catecholic drugs had been reported to be metabolized through conjugation reactions, particularly methylation and sulfation. Whether and how these two Phase II conjugation reactions may occur in a concerted manner, however, remained unclear. The current study was designed to investigate the methylation and/or sulfation of five catecholic drugs. Analysis of the spent media of HepG2 cells metabolically labeled with [35S]sulfate in the presence of individual catecholic drugs revealed the presence of two [35S]sulfated metabolites for dopamine, epinephrine, isoproterenol, and isoetharine, but only one [35S]sulfated metabolite for apomorphine. Further analyses using tropolone, a catechol O-methyltransferase (COMT) inhibitor, indicated that one of the two [35S]sulfated metabolites of dopamine, epinephrine, isoproterenol, and isoetharine was a doubly conjugated (methylated and sulfated) product, since its level decreased proportionately with increasing concentrations of tropolone added to the labeling media. Moreover, while the inhibition of methylation resulted in a decrease of the total amount of [35S]sulfated metabolites, sulfation appeared to be capable of compensating the suppressed methylation in the metabolism of these four catecholic drugs. A two-stage enzymatic assay showed the sequential methylation and sulfation of dopamine, epinephrine, isoproterenol, and isoetharine mediated by, respectively, the COMT and the cytosolic sulfotransferase SULT1A3. Collectively, the results from the present study implied the concerted actions of the COMT and SULT1A3 in the metabolism of catecholic drugs.
doi:10.1016/j.bcp.2012.08.009
PMCID: PMC3622478  PMID: 22917559
Methylation; Sulfation; COMTs; SULTs; Catecholic drugs
2.  Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases 
Journal of Biochemistry  2012;152(3):275-283.
Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [35S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [35S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo. Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.
doi:10.1093/jb/mvs073
PMCID: PMC3529569  PMID: 22763752
feed additive; ractopamine; salbutamol; sulfation; SULT
3.  Identification and Characterization of Zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5 
By searching the GenBank database, we identified sequences encoding three new zebrafish cytosolic sulfotransferases (SULTs). These three new zebrafish SULTs, designated SULT1 ST9, SULT3 ST4, and SULT3 ST5, were cloned, expressed, purified, and characterized. SULT1 ST9 appeared to be mostly involved in the metabolism and detoxification of xenobiotics such as β-naphthol, β-naphthylamine, caffeic acid and gallic acid. SULT3 ST4 showed strong activity toward endogenous compound such as dehydroepiandrosterone (DHEA), pregnenolone, and 17β-estradiol. SULT3 ST5 showed weaker, but significant, activities toward endogenous compounds such as DHEA and corticosterone, as well as xenobiotics including mestranol, β-naphthylamine, β-naphthol, and butylated hydroxyl anisole (BHA). pH-dependency and kinetic constants of these three enzymes were determined with DHEA, β-naphthol, and 17β-estradiol as substrates. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to examine the expression of these three new zebrafish SULTs at different developmental stages during embryogenesis, through larval development, and on to maturity.
doi:10.1016/j.aquatox.2012.01.015
PMCID: PMC3521529  PMID: 22360938
Cytosolic sulfotransferase; SULT; 17β-estradiol; dehydroepiandrosterone; molecular cloning; developmental expression; zebrafish
4.  Crystal Structures of Complexes of the Branched-Chain Aminotransferase from Deinococcus radiodurans with α-Ketoisocaproate and l-Glutamate Suggest the Radiation Resistance of This Enzyme for Catalysis 
Journal of Bacteriology  2012;194(22):6206-6216.
Branched-chain aminotransferases (BCAT), which utilize pyridoxal 5′-phosphate (PLP) as a cofactor, reversibly catalyze the transfer of the α-amino groups of three of the most hydrophobic branched-chain amino acids (BCAA), leucine, isoleucine, and valine, to α-ketoglutarate to form the respective branched-chain α-keto acids and glutamate. The BCAT from Deinococcus radiodurans (DrBCAT), an extremophile, was cloned and expressed in Escherichia coli for structure and functional studies. The crystal structures of the native DrBCAT with PLP and its complexes with l-glutamate and α-ketoisocaproate (KIC), respectively, have been determined. The DrBCAT monomer, comprising 358 amino acids, contains large and small domains connected with an interdomain loop. The cofactor PLP is located at the bottom of the active site pocket between two domains and near the dimer interface. The substrate (l-glutamate or KIC) is bound with key residues through interactions of the hydrogen bond and the salt bridge near PLP inside the active site pocket. Mutations of some interaction residues, such as Tyr71, Arg145, and Lys202, result in loss of the specific activity of the enzymes. In the interdomain loop, a dynamic loop (Gly173 to Gly179) clearly exhibits open and close conformations in structures of DrBCAT without and with substrates, respectively. DrBCAT shows the highest specific activity both in nature and under ionizing radiation, but with lower thermal stability above 60°C, than either BCAT from Escherichia coli (eBCAT) or from Thermus thermophilus (HB8BCAT). The dimeric molecular packing and the distribution of cysteine residues at the active site and the molecular surface might explain the resistance to radiation but small thermal stability of DrBCAT.
doi:10.1128/JB.01659-12
PMCID: PMC3486342  PMID: 22984263
5.  A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs) 
The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species.
doi:10.1016/j.jsbmb.2011.07.011
PMCID: PMC3515676  PMID: 21839837
Sulfotransferase; Sulfation; Zebra danio; Bile acid
6.  Identification, Characterization, and Ontogenic Study of a Catechol O-methyltransferase from Zebrafish 
To establish the zebrafish as a model for investigating the methylation pathway of drug metabolism, we embarked on the molecular cloning of the zebrafish catechol O-methyltransferase (COMT). By searching the GenBank database, a zebrafish nucleotide sequence encoding a putative COMT was identified. Based on the sequence information, we designed and synthesized oligonucleotides corresponding to its 5’- and 3’-coding regions of this zebrafish COMT. Using the first-strand cDNA reverse-transcribed from the total RNA isolated from a 3-month-old adult female zebrafish as the template, the cDNA encoding the zebrafish COMT was PCR-amplified. The recombinant zebrafish COMT protein was subsequently expressed in and purified from BL21 (DE3) Escherichia coli cells transformed with the pGEX-2TK expression vector harboring the zebrafish COMT cDNA. Upon enzymatic characterization, purified COMT displayed methylating activity toward dopamine, dopa, and catecholestrogens, as well as three representative catechol drugs, methyldopa, dobutamine, and isoproterenol. A reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed developmental stage-dependent expression of the zebrafish COMT during embryonic development and throughout the larval stage onto maturity. These results provide a foundation for investigating the involvement of COMT-mediated methylation in protection against the adverse effects of catechol drugs and other xenobiotic catechols during the developmental process.
doi:10.1016/j.aquatox.2010.12.016
PMCID: PMC3515678  PMID: 21371608
Catechol O-methyltransferase; developmental expression; methylation; molecular cloning; zebrafish
7.  Structure of Bacillus amyloliquefaciens α-amylase at high resolution: implications for thermal stability 
The crystal structure of B. amyloliquefaciens α-amylase (BAA) at 1.4 Å resolution revealed ambiguities in the thermal adaptation of homologous proteins in this family.
The crystal structure of Bacillus amyloliquefaciens α-amylase (BAA) at 1.4 Å resolution revealed ambiguities in the thermal adaptation of homologous proteins in this family. The final model of BAA is composed of two molecules in a back-to-back orientation, which is likely to be a consequence of crystal packing. Despite a high degree of identity, comparison of the structure of BAA with those of other liquefying-type α-amylases indicated moderate discrepancies at the secondary-structural level. Moreover, a domain-displacement survey using anisotropic B-factor and domain-motion analyses implied a significant con­tribution of domain B to the total flexibility of BAA, while visual inspection of the structure superimposed with that of B. licheniformis α-amylase (BLA) indicated higher flexibility of the latter in the central domain A. Therefore, it is suggested that domain B may play an important role in liquefying α-­amylases, as its rigidity offers a substantial improvement in thermostability in BLA compared with BAA.
doi:10.1107/S1744309109051938
PMCID: PMC2815676  PMID: 20124706
α-amylases; thermostability; flexibility; alignment
8.  Purification, crystallization and preliminary X-ray crystallographic analysis of xylose reductase from Candida tropicalis  
The crystallization of xylose reductase from C. tropicalis is reported.
Xylose reductase (XR), which requires NADPH as a co-substrate, catalyzes the reduction of d-xylose to xylitol, which is the first step in the metabolism of d-­xylose. The detailed three-dimensional structure of XR will provide a better understanding of the biological significance of XR in the efficient production of xylitol from biomass. XR of molecular mass 36.6 kDa from Candida tropicalis was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data from C. tropicalis XR crystals at 2.91 Å resolution, the unit cell belongs to space group P31 or P32. Preliminary analysis indicated the presence of four XR molecules in the asymmetric unit, with 68.0% solvent content.
doi:10.1107/S1744309109008719
PMCID: PMC2664776  PMID: 19342796
xylose reductase; Candida tropicalis
9.  A Target-specific Approach for the Identification of Tyrosine-sulfated Hemostatic Proteins 
Analytical biochemistry  2009;390(1):88-90.
Summary
A simple methodology for the identification of hemostatic proteins that are subjected to post-translational tyrosine sulfation was developed. The procedure involved sequence analysis of members of the three hemostatic pathways using Sulfinator prediction algorithm, followed by [35S]sulfate-labeling of cultured HepG2 human hepatoma cells, immunoprecipitation of targeted [35S]sulfate-labeled hemostatic proteins, and tyrosine O[35S]sulfate analysis of immunoprecipitated proteins. Three new tyrosine-sulfated hemostatic proteins, protein S, prekallikrein and plasminogen, were identified. Such a target-specific approach will allow for investigation of tyrosine-sulfated proteins of other biochemical/physiological pathways/processes and contribute to a better understating of the functional role of post-translational tyrosine sulfation.
doi:10.1016/j.ab.2009.04.002
PMCID: PMC2695991  PMID: 19351526
Hemostasis; tyrosine sulfation; post-translational protein modification
10.  Crystal Structure of Adenylylsulfate Reductase from Desulfovibrio gigas Suggests a Potential Self-Regulation Mechanism Involving the C Terminus of the β-Subunit ▿ †  
Journal of Bacteriology  2009;191(24):7597-7608.
Adenylylsulfate reductase (adenosine 5′-phosphosulfate [APS] reductase [APSR]) plays a key role in catalyzing APS to sulfite in dissimilatory sulfate reduction. Here, we report the crystal structure of APSR from Desulfovibrio gigas at 3.1-Å resolution. Different from the α2β2-heterotetramer of the Archaeoglobus fulgidus, the overall structure of APSR from D. gigas comprises six αβ-heterodimers that form a hexameric structure. The flavin adenine dinucleotide is noncovalently attached to the α-subunit, and two [4Fe-4S] clusters are enveloped by cluster-binding motifs. The substrate-binding channel in D. gigas is wider than that in A. fulgidus because of shifts in the loop (amino acid 326 to 332) and the α-helix (amino acid 289 to 299) in the α-subunit. The positively charged residue Arg160 in the structure of D. gigas likely replaces the role of Arg83 in that of A. fulgidus for the recognition of substrates. The C-terminal segment of the β-subunit wraps around the α-subunit to form a functional unit, with the C-terminal loop inserted into the active-site channel of the α-subunit from another αβ-heterodimer. Electrostatic interactions between the substrate-binding residue Arg282 in the α-subunit and Asp159 in the C terminus of the β-subunit affect the binding of the substrate. Alignment of APSR sequences from D. gigas and A. fulgidus shows the largest differences toward the C termini of the β-subunits, and structural comparison reveals notable differences at the C termini, activity sites, and other regions. The disulfide comprising Cys156 to Cys162 stabilizes the C-terminal loop of the β-subunit and is crucial for oligomerization. Dynamic light scattering and ultracentrifugation measurements reveal multiple forms of APSR upon the addition of AMP, indicating that AMP binding dissociates the inactive hexamer into functional dimers, presumably by switching the C terminus of the β-subunit away from the active site. The crystal structure of APSR, together with its oligomerization properties, suggests that APSR from sulfate-reducing bacteria might self-regulate its activity through the C terminus of the β-subunit.
doi:10.1128/JB.00583-09
PMCID: PMC2786610  PMID: 19820092
11.  Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans  
The crystallization of branched-chain aminotransferase from D. radiodurans is described.
The branched-chain amino-acid aminotransferase (BCAT), which requires pyridoxal 5′-phosphate (PLP) as a cofactor, is a key enzyme in the biosynthetic pathway of the hydrophobic amino acids leucine, isoleucine and valine. DrBCAT from Deinococcus radiodurans, which has a molecular weight of 40.9 kDa, was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data to 2.50 Å resolution from a DrBCAT crystal, the crystal belongs to space group P212121, with unit-cell parameters a = 56.37, b = 90.70, c = 155.47 Å. Preliminary analysis indicates the presence of two DrBCAT molecules in the asymmetric unit, with a solvent content of 47.52%.
doi:10.1107/S1744309107020842
PMCID: PMC2335077  PMID: 17554170
branched-chain amino-acid aminotransferase; Deinococcus radiodurans
12.  Purification, crystallization and preliminary X-ray crystallographic analysis of chitinase from Bacillus cereus NCTU2 
The crystallization of B. cereus chitinase is reported.
Chitinases (EC 3.2.1.14) are found in a broad range of organisms, including bacteria, fungi and higher plants, and play different roles depending on their origin. A chitinase from Bacillus cereus NCTU2 (ChiNCTU2) capable of hydrolyzing chitin as a carbon and nitrogen nutrient has been identified as a member of the family 18 glycoside hydrolases. ChiNCTU2 of molecular weight 36 kDa has been crystallized using the hanging-drop vapour-diffusion method. According to the diffraction of chitinase crystals at 1.10 Å resolution, the crystal belongs to space group P21, with unit-cell parameters a = 50.79, b = 48.79, c = 66.87 Å, β = 99.31°. Preliminary analysis indicates there is one chitinase molecule in the asymmetric unit, with a solvent content of 43.4%.
doi:10.1107/S1744309106031423
PMCID: PMC2242883  PMID: 16946479
chitinase; Bacillus cereus NCTU2
13.  Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa  
The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported.
Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-­amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P21212, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%.
doi:10.1107/S1744309106023335
PMCID: PMC2242909  PMID: 16880545
α-amylase/subtilisin inhibitor; rice
14.  Purification, crystallization and preliminary X-ray crystallographic analysis of rice Bowman–Birk inhibitor from Oryza sativa  
Rice Bowman–Birk inhibitor was expressed and crystallized.
Bowman–Birk inhibitors (BBIs) are cysteine-rich proteins with inhibitory activity against proteases that are widely distributed in monocot and dicot species. The expression of rice BBI from Oryza sativa is up-regulated and induced by pathogens or insects during germination of rice seeds. The rice BBI (RBTI) of molecular weight 15 kDa has been crystallized using the hanging-drop vapour-diffusion method. According to the diffraction of rice BBI crystals at a resolution of 2.07 Å, the unit cell belongs to space group P212121, with unit-cell parameters a = 74.37, b = 96.69, c = 100.36 Å. Preliminary analysis indicates four BBI molecules in an asymmetric unit, with a solvent content of 58.29%.
doi:10.1107/S1744309106014795
PMCID: PMC2243081  PMID: 16754971
Bowman–Birk inhibitors; rice
15.  Purification and Characterization of an Iron Superoxide Dismutase and a Catalase from the Sulfate-Reducing Bacterium Desulfovibrio gigas 
Journal of Bacteriology  2000;182(3):796-804.
The iron-containing superoxide dismutase (FeSOD; EC 1.15.1.1) and catalase (EC 1.11.1.6) enzymes constitutively expressed by the strictly anaerobic bacterium Desulfovibrio gigas were purified and characterized. The FeSOD, isolated as a homodimer of 22-kDa subunits, has a specific activity of 1,900 U/mg and exhibits an electron paramagnetic resonance (EPR) spectrum characteristic of high-spin ferric iron in a rhombically distorted ligand field. Like other FeSODs from different organisms, D. gigas FeSOD is sensitive to H2O2 and azide but not to cyanide. The N-terminal amino acid sequence shows a high degree of homology with other SODs from different sources. On the other hand, D. gigas catalase has an estimated molecular mass of 186 ± 8 kDa, consisting of three subunits of 61 kDa, and shows no peroxidase activity. This enzyme is very sensitive to H2O2 and cyanide and only slightly sensitive to sulfide. The native enzyme contains one heme per molecule and exhibits a characteristic high-spin ferric-heme EPR spectrum (gy,x = 6.4, 5.4); it has a specific activity of 4,200 U/mg, which is unusually low for this class of enzyme. The importance of these two enzymes in the context of oxygen utilization by this anaerobic organism is discussed.
PMCID: PMC94345  PMID: 10633116

Results 1-15 (15)