PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A Weber-like law for perceptual learning 
Scientific Reports  2013;3:1158.
What determines how much an organism can learn? One possibility is that the neural factors that limit sensory performance prior to learning, place an upper limit on the amount of learning that can take place. We tested this idea by comparing learning on a sensory task where performance is limited by cortical mechanisms, at two retinal eccentricities. Prior to learning, visual performance at the two eccentricities was either unmatched or equated in two different ways (through spatial scaling or visual crowding). The magnitude of learning was equivalent when initial levels of performance were matched regardless of how performance was equated. The magnitude of learning was a constant proportion of initial performance. This Weber-like law for perceptual learning demonstrates that it should be possible to predict the degree of perceptual improvement and the final level of performance that can be achieved via sensory training, regardless of what cortical constraint limits performance.
doi:10.1038/srep01158
PMCID: PMC3557449  PMID: 23362458
2.  Learning to Identify Near-Acuity Letters, either with or without Flankers, Results in Improved Letter Size and Spacing Limits in Adults with Amblyopia 
PLoS ONE  2012;7(4):e35829.
Amblyopia is a developmental abnormality that results in deficits for a wide range of visual tasks, most notably, the reduced ability to see fine details, the loss in contrast sensitivity especially for small objects and the difficulty in seeing objects in clutter (crowding). The primary goal of this study was to evaluate whether crowding can be ameliorated in adults with amblyopia through perceptual learning using a flanked letter identification task that was designed to reduce crowding, and if so, whether the improvements transfer to untrained visual functions: visual acuity, contrast sensitivity and the size of visual span (the amount of information obtained in one fixation). To evaluate whether the improvements following this training task were specific to training with flankers, we also trained another group of adult observers with amblyopia using a single letter identification task that was designed to improve letter contrast sensitivity, not crowding. Following 10,000 trials of training, both groups of observers showed improvements in the respective training task. The improvements generalized to improved visual acuity, letter contrast sensitivity, size of the visual span, and reduced crowding. The magnitude of the improvement for each of these measurements was similar in the two training groups. Perceptual learning regimens aimed at reducing crowding or improving letter contrast sensitivity are both effective in improving visual acuity, contrast sensitivity for near-acuity objects and reducing the crowding effect, and could be useful as a clinical treatment for amblyopia.
doi:10.1371/journal.pone.0035829
PMCID: PMC3340394  PMID: 22558234
3.  Reduced sampling efficiency causes degraded Vernier hyperacuity with normal aging: Vernier acuity in position noise 
Scientific Reports  2012;2:300.
Vernier acuity, a form of visual hyperacuity, is amongst the most precise forms of spatial vision. Under optimal conditions Vernier thresholds are much finer than the inter-photoreceptor distance. Achievement of such high precision is based substantially on cortical computations, most likely in the primary visual cortex. Using stimuli with added positional noise, we show that Vernier processing is reduced with advancing age across a wide range of noise levels. Using an ideal observer model, we are able to characterize the mechanisms underlying age-related loss, and show that the reduction in Vernier acuity can be mainly attributed to the reduction in efficiency of sampling, with no significant change in the level of internal position noise, or spatial distortion, in the visual system.
doi:10.1038/srep00300
PMCID: PMC3293147  PMID: 22393476
4.  Video-Game Play Induces Plasticity in the Visual System of Adults with Amblyopia 
PLoS Biology  2011;9(8):e1001135.
A pilot study suggests that playing video games may enhance a range of spatial vision functions in adults with amblyopia.
Abnormal visual experience during a sensitive period of development disrupts neuronal circuitry in the visual cortex and results in abnormal spatial vision or amblyopia. Here we examined whether playing video games can induce plasticity in the visual system of adults with amblyopia. Specifically 20 adults with amblyopia (age 15–61 y; visual acuity: 20/25–20/480, with no manifest ocular disease or nystagmus) were recruited and allocated into three intervention groups: action videogame group (n = 10), non-action videogame group (n = 3), and crossover control group (n = 7). Our experiments show that playing video games (both action and non-action games) for a short period of time (40–80 h, 2 h/d) using the amblyopic eye results in a substantial improvement in a wide range of fundamental visual functions, from low-level to high-level, including visual acuity (33%), positional acuity (16%), spatial attention (37%), and stereopsis (54%). Using a cross-over experimental design (first 20 h: occlusion therapy, and the next 40 h: videogame therapy), we can conclude that the improvement cannot be explained simply by eye patching alone. We quantified the limits and the time course of visual plasticity induced by video-game experience. The recovery in visual acuity that we observed is at least 5-fold faster than would be expected from occlusion therapy in childhood amblyopia. We used positional noise and modelling to reveal the neural mechanisms underlying the visual improvements in terms of decreased spatial distortion (7%) and increased processing efficiency (33%). Our study had several limitations: small sample size, lack of randomization, and differences in numbers between groups. A large-scale randomized clinical study is needed to confirm the therapeutic value of video-game treatment in clinical situations. Nonetheless, taken as a pilot study, this work suggests that video-game play may provide important principles for treating amblyopia, and perhaps other cortical dysfunctions.
Trial Registration
ClinicalTrials.gov NCT01223716
Author Summary
Early abnormal visual experience disrupts neuronal circuitry in the brain and results in reduced vision, known as amblyopia or “lazy eye,” the most frequent cause of permanent visual loss in childhood. It is generally believed that adult amblyopia is irreversible beyond the sensitive period of brain development during childhood. In this study, we examine whether playing video games, both action and non-action, has an effect on the vision of adults with amblyopia. We assessed visual acuity (visual resolution), positional acuity (the ability to localize object's relative position), spatial attention (the ability to direct visual attention to various locations in the visual field), and stereoacuity (stereo-vision / 3-D depth perception) in a small group of teenagers and adults. We found that they tended to recover vision much faster than we would have expected from the results of conventional occlusion therapy in childhood amblyopia. Additional experiments and modelling suggest that the improvements are a result of decreasing spatial distortion and increasing information processing efficiency in the amblyopic brain. Thus, video games may include essential elements for active vision training to boost visual performance. Most importantly, our findings suggest that video-game play may provide important principles for treating amblyopia, a suggestion that we are pursuing with larger scale clinical trials.
doi:10.1371/journal.pbio.1001135
PMCID: PMC3166159  PMID: 21912514
5.  Aging and Visual Counting 
PLoS ONE  2010;5(10):e13434.
Background
Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a “single glance”, without the confounding influence of eye movements.
Methodology/Principal Findings
We recruited 104 observers with normal vision across the age span (age 21–85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61–85: ∼5 dots) when compared with the youngest groups (age 21–40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more.
Conclusion/Significance
Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin.
doi:10.1371/journal.pone.0013434
PMCID: PMC2956663  PMID: 20976149
6.  Perceptual Learning as a potential treatment for amblyopia: a mini-review 
Vision research  2009;49(21):2535-2549.
Amblyopia is a developmental abnormality that results from physiological alterations in the visual cortex and impairs form vision. It is a consequence of abnormal binocular visual experience during the “sensitive period” early in life. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. A number of studies over the last twelve years or so suggest that Perceptual Learning (PL) may provide an important new method for treating amblyopia.
The aim of this mini-review is to provide a critical review and “meta-analysis” of perceptual learning in adults and children with amblyopia, with a view to extracting principles that might make PL more effective and efficient. Specifically we evaluate:
What factors influence the outcome of perceptual learning?Specificity and generalization – two sides of the coin.Do the improvements last?How does PL improve visual function?Should PL be part of the treatment armamentarium?
A review of the extant studies makes it clear that practicing a visual task results in a long-lasting improvement in performance in an amblyopic eye. The improvement is generally strongest for the trained eye, task, stimulus and orientation, but appears to have a broader spatial frequency bandwidth than in normal vision. Importantly, practicing on a variety of different tasks and stimuli seems to transfer to improved visual acuity. Perceptual learning operates via a reduction of internal neural noise and/or through more efficient use of the stimulus information by retuning the weighting of the information. The success of PL raises the question of whether it should become a standard part of the armamentarium for the clinical treatment of amblyopia, and suggests several important principles for effective perceptual learning in amblyopia.
doi:10.1016/j.visres.2009.02.010
PMCID: PMC2764839  PMID: 19250947
Amblyopia; perceptual learning; sensitive period; critical period; internal noise; template-retuning; occlusion
7.  Improving the performance of the amblyopic visual system 
Experience-dependent plasticity is closely linked with the development of sensory function; however, there is also growing evidence for plasticity in the adult visual system. This review re-examines the notion of a sensitive period for the treatment of amblyopia in the light of recent experimental and clinical evidence for neural plasticity. One recently proposed method for improving the effectiveness and efficiency of treatment that has received considerable attention is ‘perceptual learning’. Specifically, both children and adults with amblyopia can improve their perceptual performance through extensive practice on a challenging visual task. The results suggest that perceptual learning may be effective in improving a range of visual performance and, importantly, the improvements may transfer to visual acuity. Recent studies have sought to explore the limits and time course of perceptual learning as an adjunct to occlusion and to investigate the neural mechanisms underlying the visual improvement. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia.
doi:10.1098/rstb.2008.0203
PMCID: PMC2674474  PMID: 19008199
amblyopia; perceptual learning; sensitive periods; plasticity
8.  Learning to Identify Near-Threshold Luminance-Defined and Contrast-Defined Letters in Observers with Amblyopia 
Vision research  2008;48(27):2739-2750.
We assessed whether or not the sensitivity for identifying luminance-defined and contrast-defined letters improved with training in a group of amblyopic observers who have passed the critical period of development. In Experiment 1, we tracked the contrast threshold for identifying luminance-defined letters with training in a group of 11 amblyopic observers. Following training, six observers showed a reduction in thresholds, averaging 20%, for identifying luminance-defined letters. This improvement transferred extremely well to the untrained task of identifying contrast-defined letters (average improvement = 38%) but did not transfer to an acuity measurement. Seven of the 11 observers were subsequently trained on identifying contrast-defined letters in Experiment 2. Following training, five of these seven observers demonstrated a further improvement, averaging 17%, for identifying contrast-defined letters. This improvement did not transfer to the untrained task of identifying luminance-defined letters. Our findings are consistent with predictions based on the locus of learning for first- and second-order stimuli according to the filter-rectifier-filter model for second-order visual processing.
doi:10.1016/j.visres.2008.09.009
PMCID: PMC2642955  PMID: 18824189
Amblyopia; Perceptual learning; Training; First-order; Second-order; Letter recognition
9.  Prolonged Perceptual Learning of Positional Acuity in Adult Amblyopia 
Amblyopia is a developmental abnormality that results in physiological alterations in the visual cortex and impairs form vision. It is often successfully treated by patching the sound eye in infants and young children, but is generally considered to be untreatable in adults. However, a number of recent studies suggest that repetitive practice of a visual task using the amblyopic eye results in improved performance in both children and adults with amblyopia. These perceptual learning studies have used relatively brief periods of practice; however, clinical studies have shown that the time-constant for successful patching is long. The time-constant for perceptual learning in amblyopia is still unknown. Here we show that the time-constant for perceptual learning depends on the degree of amblyopia. Severe amblyopia requires more than 50 hours (≈35,000 trials) to reach plateau, yielding as much as a five-fold improvement in performance at a rate of ≈1.5% per hour. There is significant transfer of learning from the amblyopic to the dominant eye, suggesting that the learning reflects alterations in higher decision stages of processing. Using a reverse correlation technique, we document, for the first time, a dynamic retuning of the amblyopic perceptual decision template and a substantial reduction in internal spatial distortion. These results show that the mature amblyopic brain is surprisingly malleable, and point to more intensive treatment methods for amblyopia.
doi:10.1523/JNEUROSCI.4271-08.2008
PMCID: PMC2765479  PMID: 19109504
plasticity; critical period; visual learning; positional acuity; classification image; amblyopia
10.  Crowding between first- and second-order letter stimuli in normal foveal and peripheral vision 
Journal of vision  2007;7(2):10.1-1013.
Evidence that the detection of first- and second-order visual stimuli is processed by separate pathways abounds. This study asked whether first- and second-order stimuli remain independent at the stage of processing where crowding occurs. We measured thresholds for identifying a first-order (luminance defined) or second-order (contrast defined) target letter in the presence of two second- or first-order flanking letters. For comparison, we also measured thresholds when the target and flanking letters were all first or second order. Contrast of the flankers was 1.6 times their respective contrast thresholds. Measurements were obtained at the fovea and 10° in the lower visual field of four normally sighted observers. Two observers were also tested at 10° nasal visual field. As expected, in both the fovea and periphery, the magnitude of crowding (threshold elevation) was maximal at the closest letter separation and decreased as letter separation increased. The magnitude of crowding was greater for second- than for first-order target letters, independent of the order type of flankers; however, the critical distance for crowding was similar for first- and second-order letters. Substantial crossover crowding occurred when the target and flanking letters were of different order type. Our finding of substantial interaction between first- and second-order stimuli suggests that the processing of these stimuli is not independent at the stage of processing at which crowding occurs.
doi:10.1167/7.2.10
PMCID: PMC2747649  PMID: 18217825
crowding; first order; second order; peripheral vision; letter identification
11.  Learning to identify contrast-defined letters in peripheral vision 
Vision research  2005;46(6-7):1038-1047.
Performance for identifying luminance-defined letters in peripheral vision improves with training. The purpose of the present study was to examine whether performance for identifying contrast-defined letters also improves with training in peripheral vision, and whether any improvement transfers to luminance-defined letters. Eight observers were trained to identify contrast-defined letters presented singly at 10° eccentricity in the inferior visual field. Before and after training, we measured observers’ thresholds for identifying luminance-defined and contrast-defined letters, embedded within a field of white luminance noise (maximum luminance contrast = 0, 0.25, and 0.5), at the same eccentric location. Each training session consisted of 10 blocks (100 trials per block) of identifying contrast-defined letters at a background noise contrast of 0.5. Letters (x-height = 4.2°) were the 26 lowercase letters of the Times-Roman alphabet. Luminance-defined letters were generated by introducing a luminance difference between the stimulus letter and its mid-gray background. The background noise covered both the letter and its background. Contrast-defined letters were generated by introducing a differential noise contrast between the group of pixels that made up the stimulus letter and the group of pixels that made up the background. Following training, observers showed a significant reduction in threshold for identifying contrast-defined letters (p < 0.0001). Averaged across observers and background noise contrasts, the reduction was 25.8%, with the greatest reduction (32%) occurring at the trained background noise contrast. There was virtually no transfer of improvement to luminance-defined letters, or to an untrained letter size (2× original), or an untrained retinal location (10° superior field). In contrast, learning transferred completely to the untrained contralateral eye. Our results show that training improves performance for identifying contrast-defined letters in peripheral vision. This perceptual learning effect seems to be stimulus-specific, as it shows no transfer to the identification of luminance-defined letters. The complete interocular transfer, and the retinotopic (retinal location) and size specificity of the learning effect are consistent with the properties of neurons in early visual area V2.
doi:10.1016/j.visres.2005.10.013
PMCID: PMC2747643  PMID: 16337252
Letter recognition; Peripheral vision; Perceptual learning; Second-order
12.  Crowding Between First- and Second-Order Letters in Amblyopia 
Vision research  2008;48(6):788-798.
To test whether first- and second-order stimuli are processed independently in amblyopic vision, we measured thresholds for identifying a target letter flanked by two letters for all combinations of first- and second-order targets and flankers. We found that (1) the magnitude of crowding is greater for second- than for first-order letters for target and flankers of the same order type; (2) substantial but asymmetric cross-over crowding occurs such that stronger crowding is found for a second-order letter flanked by first-order letters than for the converse; (3) the spatial extent of crowding is independent of the order type of the letters. Our findings are consistent with the hypothesis that crowding results from an abnormal integration of target and flankers beyond the stage of feature detection, which takes place over a large distance in amblyopic vision.
doi:10.1016/j.visres.2007.12.011
PMCID: PMC2739010  PMID: 18241910
amblyopia; crowding; first order; second order; letter identification
13.  Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia 
Vision research  2006;46(22):3853-3861.
Amblyopes show specific deficits in processing second-order spatial information (e.g. Wong, Levi, & McGraw (2001). Is second-order spatial loss in amblyopia explained by the loss of first-order spatial input? Vision Research, 41, 2951–2960). Recent work suggests there is a significant degree of plasticity in the visual pathway that processes first-order spatial information in adults with amblyopia. In this study, we asked whether or not there is similar plasticity in the ability to process second-order spatial information in adults with amblyopia. Ten adult observers with amblyopia (five strabismic, four anisometropic and one mixed) were trained to identify contrast-defined (second-order) letters using their amblyopic eyes. Before and after training, we determined observers’ contrast thresholds for identifying luminance-defined (first-order) and contrast-defined letters, separately for the non-amblyopic and amblyopic eyes. Following training, eight of the 10 observers showed a significant reduction in contrast thresholds for identifying contrast-defined letters with the amblyopic eye. Five of these observers also showed a partial transfer of improvement to their fellow untrained non-amblyopic eye for identifying contrast-defined letters. There was a small but statistically significant transfer to the untrained task of identifying luminance-defined letters in the same trained eye. Similar to first-order spatial tasks, adults with amblyopia benefit from perceptual learning for identifying contrast-defined letters in their amblyopic eyes, suggesting a sizeable degree of plasticity in the visual pathway for processing second-order spatial information.
doi:10.1016/j.visres.2006.06.014
PMCID: PMC1852540  PMID: 16930666
Amblyopia; Letter recognition; Perceptual learning; Second-order

Results 1-13 (13)