Search tips
Search criteria

Results 1-25 (89)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma 
Science translational medicine  2013;5(174):10.1126/scitranslmed.3004812.
Asthma is a prevalent disease of chronic inflammation in which endogenous counter-regulatory signaling pathways are dysregulated. Recent evidence suggests that innate lymphoid cells (ILCs), including natural killer (NK) cells and type 2 innate lymphoid cells (ILC2), can participate in the regulation of allergic airways responses, in particular airway mucosal inflammation. Here, we have identified both NK cells and ILC2 in human lung and peripheral blood in healthy and asthmatic subjects. NK cells were highly activated in severe asthma, linked to eosinophilia and interacted with autologous eosinophils to promote their apoptosis. ILC2 generated antigen-independent IL-13 in response to the mast cell product prostaglandin D2 (PGD2) alone and in a synergistic manner with the airway epithelial cytokines IL-25 and IL-33. Both NK cells and ILC2 expressed the pro-resolving ALX/FPR2 receptors. Lipoxin A4, a natural pro-resolving ligand for ALX/FPR2 receptors, significantly increased NK cell mediated eosinophil apoptosis and decreased IL-13 release by ILC2. Together, these findings indicate that ILCs are targets for lipoxin A4 to decrease airway inflammation and mediate the catabasis of eosinophilic inflammation. Because lipoxin A4 generation is decreased in severe asthma, these findings also implicate unrestrained ILC activation in asthma pathobiology.
PMCID: PMC3823369  PMID: 23447017
2.  Health advantage for black women: patterns in pre-menstrual dysphoric disorder 
Psychological Medicine  2010;41(8):1741-1750.
Pre-menstrual dysphoric disorder (PMDD) is commonly studied in white women; consequently, it is unclear whether the prevalence of PMDD varies by race. Although a substantial proportion of black women report symptoms of PMDD, the Biocultural Model of Women’s Health and research on other psychiatric disorders suggest that black women may be less likely than white women to experience PMDD in their lifetimes.
Multivariate multinomial logistic regression modeling was used with a sample of 2590 English-speaking, pre-menopausal American women (aged 18–40 years) who participated in the Collaborative Psychiatric Epidemiology Surveys in 2001–2003. The sample consisted of 1672 black women and 918 white women. The measure of PMDD yields a provisional diagnosis of PMDD consistent with DSM-IV criteria.
Black women were significantly less likely than white women to experience PMDD [odds ratio (OR) 0.44, 95% confidence interval (CI) 0.25–0.79] and pre-menstrual symptoms (OR 0.64, 95% CI 0.47–0.88) in their lifetimes, independently of marital status, employment status, educational attainment, smoking status, body mass index, history of oral contraceptive use, current age, income, history of past-month mood disorder, and a measure of social desirability. The prevalence of PMDD was 2.9% among black women and 4.4% among white women.
This study showed for the first time that black women were less likely than white women to experience PMDD and pre-menstrual symptoms, independently of relevant biological, social-contextual and psychological risk factors. This suggests that PMDD may be an exception to the usual direction of racial disparities in health. Further research is needed to determine the mechanisms that explain this health advantage.
PMCID: PMC3404818  PMID: 21108869
Epidemiology; minority health; premenstrual dysphoric disorder
3.  Endogenous lipid mediators in the resolution of airway inflammation 
Acute inflammation in the lung is fundamentally important to host defence, but chronic or excessive inflammation leads to several common respiratory diseases, including asthma and acute respiratory distress syndrome.
The resolution of inflammation is an active process. In health, events at the onset of acute inflammation establish biosynthetic circuits for specific chemical mediators that later serve as agonists to orchestrate a return to tissue homeostasis. In addition to an overabundance of pro-inflammatory stimuli, pathological inflammation can also result from defects in resolution signalling.
The understanding of anti-inflammatory, pro-resolution molecules and their counter-regulatory signalling pathways is providing new insights into the molecular pathophysiology of lung disease and opportunities for the design of therapeutic strategies.
In the present review, the growing family of lipid mediators of resolution is examined, including lipoxins, resolvins, protectins, cyclopentenones and presqualene diphosphate. Roles are uncovered for these compounds, or their structural analogues, in regulating airway inflammation.
PMCID: PMC3005702  PMID: 17978156
Acute respiratory distress syndrome; asthma; inflammation; lipoxins; mediators; resolution
5.  SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts 
Molecular Human Reproduction  2010;16(8):590-600.
Although selection of chromosomally normal embryos has the potential to improve outcomes for patients undergoing IVF, the clinical impact of aneuploidy screening by fluorescence in situ hybridization (FISH) has been controversial. There are many putative explanations including sampling error due to mosaicism, negative impact of biopsy, a lack of comprehensive chromosome screening, the possibility of embryo self-correction and poor predictive value of the technology itself. Direct analysis of the negative predictive value of FISH-based aneuploidy screening for an embryo's reproductive potential has not been performed. Although previous studies have found that cleavage-stage FISH is poorly predictive of aneuploidy in morphologically normal blastocysts, putative explanations have not been investigated. The present study used a single nucleotide polymorphism (SNP) microarray-based 24 chromosome aneuploidy screening technology to re-evaluate morphologically normal blastocysts that were diagnosed as aneuploid by FISH at the cleavage stage. Mosaicism and preferential segregation of aneuploidy to the trophectoderm (TE) were evaluated by characterization of multiple sections of the blastocyst. SNP microarray technology also provided the first opportunity to evaluate self-correction mechanisms involving extrusion or duplication of aneuploid chromosomes resulting in uniparental disomy (UPD). Of all blastocysts evaluated (n = 50), 58% were euploid in all sections despite an aneuploid FISH result. Aneuploid blastocysts displayed no evidence of preferential segregation of abnormalities to the TE. In addition, extrusion or duplication of aneuploid chromosomes resulting in UPD did not occur. These findings support the conclusion that cleavage-stage FISH technology is poorly predictive of aneuploidy in morphologically normal blastocysts.
PMCID: PMC2907218  PMID: 20479065
FISH; PGD; microarray; mosaicism; uniparental isodisomy
6.  Simple Subcutaneous Stitch 
PMCID: PMC1963557
7.  Authors' Response 
PMCID: PMC1963816
8.  A Revised Guide-Wire Technique for Urethral Catheter Insertion 
PMCID: PMC1964094  PMID: 17387819
9.  Vasculogenesis and Angiogenesis: Molecular and Cellular Controls 
Interventional Neuroradiology  2004;9(3):227-237.
Angiogenesis characterizes embryonic development, but also occurs in adulthood in physiological situations such as adaptation to muscle exercise, and in pathological conditions like cancer. Major advances have been made in understanding the molecular mechanisms responsible for vasculogenesis and angiogenesis, largely due to the use of “knock-out mice”, i.e. mice in which the gene coding for the protein under investigation has been inactivated. Interestingly, the same growth factors and their receptors are equally involved in the different aspects of vasculogenesis and angiogenesis during development and in adulthood. This review aims to describe in detail their respective roles and how interactions between them lead to a newly formed vessel.
PMCID: PMC3548208  PMID: 20591248
vasculogenesis; angiogenesis; growth factors
10.  Vasculogenesis and Angiogenesis: Molecular and Cellular Controls 
Interventional Neuroradiology  2004;9(3):239-248.
Angiogenesis, defined as a new blood vessel formation from a pre-existing vessel, is initiated by angiogenic growth factors and their receptors that induce endothelial cell migration and proliferation. Extracellular proteolysis is essential for deassembly and reassembly of endothelial cells to their environmental matrix. The aim of this review is to update data on the role of the coagulation and fibrinolysis system, metalloproteinases and adhesion molecules during this step of angiogenesis.
PMCID: PMC3548209  PMID: 20591249
angiogenesis; adhesion molecules; integrins; metalloproteinases; uPA, PAI-1
11.  Mechanical properties of the common carotid artery in Williams syndrome 
Heart  2000;84(3):290-293.
OBJECTIVE—To determine whether arterial wall hypertrophy in elastic arteries was associated with alteration in their mechanical properties in young patients with Williams syndrome.
METHODS—Arterial pressure and intima-media thickness, cross sectional compliance, distensibility, circumferential wall stress, and incremental elastic modulus of the common carotid artery were measured non-invasively in 21 Williams patients (mean (SD) age 8.5 (4) years) and 21 children of similar age.
RESULTS—Systolic and diastolic blood pressures were higher in Williams patients (125/66 v 113/60 mm Hg, p < 0.05). The mean (SD) intima-media thickness was increased in Williams patients, at 0.6 (0.07) v 0.5 (0.03) mm (p < 0.001). Normotensive Williams patients had a lower circumferential wall stress (2.1 (0.5) v 3.0 (0.7) mm Hg, p < 0.01), a higher distensibility (1.1 (0.3) v 0.8 (0.3) mm Hg−1.10−2, p < 0.01), similar cross sectional compliance (0.14 (0.04) v 0.15 (0.05) Hg−1, p > 0.05), and lower incremental elastic modulus (7.4 (2.0) v 14.0 (5.0) mm Hg.102; p < 0.001).
CONCLUSIONS—The compliance of the large elastic arteries is not modified in Williams syndrome, even though increased intima-media thickness and lower arterial stiffness are consistent features. Therefore systemic hypertension cannot be attributed to impaired compliance of the arterial tree in this condition.

Keywords: elastin; Williams syndrome; hypertension; compliance
PMCID: PMC1760965  PMID: 10956293
12.  Role of AcrR and RamA in Fluoroquinolone Resistance in Clinical Klebsiella pneumoniae Isolates from Singapore 
The MICs of ciprofloxacin for 33 clinical isolates of K. pneumoniae resistant to extended-spectrum cephalosporins from three hospitals in Singapore ranged from 0.25 to >128 μg/ml. Nineteen of the isolates were fluoroquinolone resistant according to the NCCLS guidelines. Strains for which the ciprofloxacin MIC was ≥0.5 μg/ml harbored a mutation in DNA gyrase A (Ser83→Tyr, Leu, or IIe), and some had a secondary Asp87→Asn mutation. Isolates for which the MIC was 16 μg/ml possessed an additional alteration in ParC (Ser80→IIe, Trp, or Arg). Tolerance of the organic solvent cyclohexane was observed in 10 of the 19 fluoroquinolone-resistant strains; 3 of these were also pentane tolerant. Five of the 10 organic solvent-tolerant isolates overexpressed AcrA and also showed deletions within the acrR gene. Complementation of the mutated acrR gene with the wild-type gene decreased AcrA levels and produced a two- to fourfold reduction in the fluoroquinolone MICs. None of the organic solvent-tolerant clinical isolates overexpressed another efflux-related gene, acrE. While marA and soxS were not overexpressed, another marA homologue, ramA, was overexpressed in 3 of 10 organic solvent-tolerant isolates. These findings indicate that multiple target and nontarget gene changes contribute to fluoroquinolone resistance in K. pneumoniae. Besides AcrR mutations, ramA overexpression (but not marA or soxS overexpression) was related to increased AcrAB efflux pump expression in this collection of isolates.
PMCID: PMC182603  PMID: 12936981
13.  Antibacterial household products: cause for concern. 
Emerging Infectious Diseases  2001;7(3 Suppl):512-515.
The recent entry of products containing antibacterial agents into healthy households has escalated from a few dozen products in the mid-1990s to more than 700 today. Antibacterial products were developed and have been successfully used to prevent transmission of disease-causing microorganisms among patients, particularly in hospitals. They are now being added to products used in healthy households, even though an added health benefit has not been demonstrated. Scientists are concerned that the antibacterial agents will select bacteria resistant to them and cross-resistant to antibiotics. Moreover, if they alter a person's microflora, they may negatively affect the normal maturation of the T helper cell response of the immune system to commensal flora antigens; this change could lead to a greater chance of allergies in children. As with antibiotics, prudent use of these products is urged. Their designated purpose is to protect vulnerable patients.
PMCID: PMC2631814  PMID: 11485643
14.  A soxRS-Constitutive Mutation Contributing to Antibiotic Resistance in a Clinical Isolate of Salmonella enterica (Serovar Typhimurium) 
The soxRS regulon is activated by redox-cycling drugs such as paraquat and by nitric oxide. The >15 genes of this system provide resistance to both oxidants and multiple antibiotics. An association between clinical quinolone resistance and elevated expression of the soxRS regulon has been observed in Escherichia coli, but this association has not been explored for other enteropathogenic bacteria. Here we describe a soxRS-constitutive mutation in a clinical strain of Salmonella enterica (serovar Typhimurium) that arose with the development of resistance to quinolones during treatment. The elevated quinolone resistance in this strain derived from a point mutation in the soxR gene and could be suppressed in trans by multicopy wild-type soxRS. Multiple-antibiotic resistance was also transferred to a laboratory strain of S. enterica by introducing the cloned mutant soxR gene from the clinical strain. The results show that constitutive expression of soxRS can contribute to antibiotic resistance in clinically relevant S. enterica.
PMCID: PMC90236  PMID: 11120941
15.  Non-Target Gene Mutations in the Development of Fluoroquinolone Resistance in Escherichia coli 
Mutations in loci other than genes for the target topoisomerases of fluoroquinolones, gyrA and parC, may play a role in the development of fluoroquinolone resistance in Escherichia coli. A series of mutants with increasing resistance to ofloxacin was obtained from an E. coli K-12 strain and five clinical isolates. First-step mutants acquired a gyrA mutation. Second-step mutants reproducibly acquired a phenotype of multiple antibiotic resistance (Mar) and organic solvent tolerance and showed enhanced fluoroquinolone efflux. None of the second-step mutants showed additional topoisomerase mutations. All second-step mutants showed constitutive expression of marA and/or overexpressed soxS. In some third-step mutants, fluoroquinolone efflux was further enhanced compared to that for second-step mutants, even when the mutant had acquired additional topoisomerase mutations. Attempts to circumvent the second-step Mar mutation by induction of the mar locus with sodium salicylate and thus to select for pure topoisomerase mutants at the second step were not successful. At least in vitro, non-target gene mutations accumulate in second- and third-step mutants upon exposure to a fluoroquinolone and typically include, but do not appear to be limited to, mutations in the mar or sox regulons with consequent increased drug efflux.
PMCID: PMC89776  PMID: 10722475
16.  Children and war. 
Public Health Reports  2000;115(4):320-325.
PMCID: PMC1308571  PMID: 11059424
17.  Enzyme replacement therapy for murine mucopolysaccharidosis type VII leads to improvements in behavior and auditory function. 
Journal of Clinical Investigation  1998;101(7):1394-1400.
Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is one of a group of lysosomal storage diseases that share many clinical features, including mental retardation and hearing loss. Lysosomal storage in neurons of the brain and the associated behavioral abnormalities characteristic of a murine model of MPS VII have not been shown to be corrected by either bone marrow transplantation or gene therapy. However, intravenous injections of recombinant beta-glucuronidase initiated at birth reduce the pathological evidence of disease in MPS VII mice. In this study we present evidence that enzyme replacement initiated at birth improved the behavioral performance and reduced hearing loss in MPS VII mice. Enzyme-treated MPS VII mice performed similarly to normal mice and significantly better than mock- treated MPS VII mice in every phase of the Morris Water Maze test. In addition, the auditory function of treated MPS VII mice was dramatically improved, and was indistinguishable from normal mice. These data indicate that some of the learning, memory, and hearing deficits can be prevented in MPS VII mice if enzyme replacement therapy is initiated early in life. These data also provide functional correlates to the biochemical and histopathological improvements observed after enzyme replacement therapy.
PMCID: PMC508717  PMID: 9525982
18.  Inhibition of the multiple antibiotic resistance (mar) operon in Escherichia coli by antisense DNA analogs. 
Antimicrobial Agents and Chemotherapy  1997;41(12):2699-2704.
The multiple antibiotic resistance operon (marORAB) in Escherichia coli controls intrinsic susceptibility and resistance to multiple, structurally different antibiotics and other noxious agents. A plasmid construct with marA cloned in the antisense direction reduced LacZ expression from a constitutively expressed marA::lacZ translational fusion and inhibited the induced expression of LacZ in cells bearing the wild-type repressed fusion. The marA antisense construction also decreased the multiple antibiotic resistance of a Mar mutant. Two antisense phosphorothioate oligonucleotides, one targeted to marO and the other targeted to marA of the mar operon, introduced by heat shock or electroporation reduced LacZ expression in the strain having the marA::lacZ fusion. One antisense oligonucleotide, tested against a Mar mutant of E. coli ML308-225, increased the bactericidal activity of norfloxacin. These studies demonstrate the efficacy of exogenously delivered antisense oligonucleotides targeted to the marRAB operon in inhibiting expression of this chromosomal regulatory locus.
PMCID: PMC164191  PMID: 9420041
19.  Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. 
Antimicrobial Agents and Chemotherapy  1997;41(12):2770-2772.
Mutants of Escherichia coli selected for resistance to the disinfectant pine oil or to a household product containing pine oil also showed resistance to multiple antibiotics (tetracycline, ampicillin, chloramphenicol, and nalidixic acid) and overexpressed the marA gene. Likewise, antibiotic-selected Mar mutants, which also overexpress marA, were resistant to pine oil. Deletion of the mar or acrAB locus, the latter encoding a multidrug efflux pump positively regulated in part by MarA, increased the susceptibility of wild-type and mutant strains to pine oil.
PMCID: PMC164207  PMID: 9420057
20.  Glutamate residues located within putative transmembrane helices are essential for TetA(P)-mediated tetracycline efflux. 
Journal of Bacteriology  1997;179(22):7011-7015.
The tetA(P) gene from Clostridium perfringens encodes a unique membrane protein that is responsible for the active efflux of tetracycline from resistant cells. The novel TetA(P) protein has neither the typical structure nor the conserved motifs that are found in tetracycline efflux proteins from classes A through H or classes K and L. Site-directed mutagenesis of selected residues within TetA(P) was performed to elucidate their role in tetracycline efflux. Glutamate residues 52 and 59, negatively charged residues located within putative transmembrane helix 2, could not be replaced by either glutamine or aspartate and so were essential for tetracycline efflux. Replacement of Glu89, which was located at the end of helix 3, by aspartate but not by glutamine allowed TetA(P) function, indicating the importance of a carboxyl group at this position. After mutation of the Asp67 residue, located within cytoplasmic loop 1, no immunoreactive protein was detected. It is concluded that negatively charged residues that appear to be located within or near the membrane are important for the function of TetA(P).
PMCID: PMC179641  PMID: 9371447
22.  Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. 
Journal of Bacteriology  1997;179(19):6122-6126.
Escherichia coli K-12 strains are normally tolerant to n-hexane and susceptible to cyclohexane. Constitutive expression of marA of the multiple antibiotic resistance (mar) locus or of the soxS or robA gene product produced tolerance to cyclohexane. Inactivation of the mar locus or the robA locus, but not the soxRS locus, increased organic solvent susceptibility in the wild type and Mar mutants (to both n-hexane and cyclohexane). The organic solvent hypersusceptibility is a newly described phenotype for a robA-inactivated strain. Multicopy expression of mar, soxS, or robA induced cyclohexane tolerance in strains with a deleted or inactivated chromosomal mar, soxRS, or robA locus; thus, each transcriptional activator acts independently of the others. However, in a strain with 39 kb of chromosomal DNA, including the mar locus, deleted, only the multicopy complete mar locus, consisting of its two operons, produced cyclohexane tolerance. Deletion of acrAB from either wild-type E. coli K-12 or a Mar mutant resulted in loss of tolerance to both n-hexane and cyclohexane. Organic solvent tolerance mediated by mar, soxS, or robA was not restored in strains with acrAB deleted. These findings strongly suggest that active efflux specified by the acrAB locus is linked to intrinsic organic solvent tolerance and to tolerance mediated by the marA, soxS, or robA gene product in E. coli.
PMCID: PMC179517  PMID: 9324261
23.  Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance. 
Journal of Clinical Investigation  1997;100(6):1520-1528.
Modulation of vascular tone by chemical and mechanical stimuli is a crucial adaptive phenomenon which involves cytoskeleton elements. Disruption, by homologous recombination, of the gene encoding vimentin, a class III intermediate filament protein mainly expressed in vascular cells, was reported to result in apparently normal phenotype under physiological conditions. In this study, we evaluated whether the lack of vimentin affects vascular adaptation to pathological situations, such as reduction of renal mass, a pathological condition which usually results in immediate and sustained vasodilation of the renal vascular bed. Ablation of 3/4 of renal mass was constantly lethal within 72 h in mice lacking vimentin (Vim-/-), whereas no lethality was observed in wild-type littermates. Death in Vim-/- mice resulted from end-stage renal failure. Kidneys from Vim-/- mice synthesized more endothelin, but less nitric oxide (NO), than kidneys from normal animals. In vitro, renal resistance arteries from Vim-/- mice were selectively more sensitive to endothelin, less responsive to NO-dependent vasodilators, and exhibited an impaired flow (shear stress)- induced vasodilation, which is NO dependent, as compared with those from normal littermates. Finally, in vivo administration of bosentan, an endothelin receptor antagonist, totally prevented lethality in Vim-/- mice. These results suggest that vimentin plays a key role in the modulation of vascular tone, possibly via the tuning of endothelin-nitric oxide balance.
PMCID: PMC508333  PMID: 9294120
24.  Murine mucopolysaccharidosis type VII: long term therapeutic effects of enzyme replacement and enzyme replacement followed by bone marrow transplantation. 
Journal of Clinical Investigation  1997;99(7):1596-1605.
We demonstrated previously that short term administration of recombinant beta-glucuronidase to newborn mice with mucopolysaccharidosis type VII reduced lysosomal storage in many tissues. Lysosomal storage accumulated gradually after cessation of enzyme replacement therapy. Mice alive at 1 yr of age had decreased bone deformities and less lysosomal storage in cortical neurons. Here we compare the effects of long term enzyme replacement initiated either at birth or at 6 wk of age, and of enzyme administration initiated at birth followed by syngeneic bone marrow transplantation (BMT) at 5 wk of age. Several mice from each treatment group lived to at least 1 yr of age. Liver and spleen samples had beta-glucuronidase levels ranging from 2.4 to 19.8% of normal and showed a parallel decrease in lysosomal storage. The combination of enzyme replacement therapy followed by BMT reduced lysosomal distension in meninges, corneal fibroblasts, and bone when compared with treatment with enzyme alone. Mice treated at birth had less lysosomal storage in some neurons of the brain and the skeletal dysplasia was less severe when compared to mice whose treatment was delayed until 6 wk of age. We conclude that both enzyme replacement alone and early enzyme replacement followed by BMT have long term positive effects on murine mucopolysaccharidosis type VII. In addition, treatment started at birth is far more effective than treatment initiated in young adults.
PMCID: PMC507979  PMID: 9120003
25.  Effect of glucose transport inhibitors on vincristine efflux in multidrug-resistant murine erythroleukaemia cells overexpressing the multidrug resistance-associated protein (MRP) and two glucose transport proteins, GLUT1 and GLUT3. 
British Journal of Cancer  1997;75(2):161-168.
The relationship between mammalian facilitative glucose transport proteins (GLUT) and multidrug resistance was examined in two vincristine (VCR)-selected murine erythroleukaemia (MEL) PC4 cell lines. GLUT proteins, GLUT1 and GLUT3, were constitutively coexpressed in the parental cell line and also in the VCR-selected cell lines. Increased expression of the GLUT1 isoform was noted both in the PC-V40 (a non-P-glycoprotein, mrp-overexpressing subline) and in the more resistant PC-V160 (overexpressing mrp and mdr3) cell lines. Overexpression of GLUT3 was detected only in the PC-V160 subline. An increased rate of facilitative glucose transport (Vmax) and level of plasma membrane GLUT protein expression paralleled increased VCR resistance, active VCR efflux and decreased VCR steady-state accumulation in these cell lines. Glucose transport inhibitors (GTIs), cytochalasin B (CB) and phloretin blocked the active efflux and decreased steady-state accumulation of VCR in the PC-V40 subline. GTIs did not significantly affect VCR accumulation in the parental or PC-V160 cells. A comparison of protein sequences among GLUT1, GLUT3 and MRP revealed a putative cytochalasin B binding site in MRP, which displayed 44% sequence similarity/12% identity with that previously identified in GLUT1 and GLUT3; these regions also exhibited a similar hydropathy plot pattern. The findings suggested that CB bound to MRP and directly or indirectly lowered VCR efflux and/or CB bound to one or both GLUT proteins, which acted to lower the VCR efflux mediated by MRP. This is the first report of a non-neuronal murine cell line that expressed GLUT3.
PMCID: PMC2063264  PMID: 9010020

Results 1-25 (89)