PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Sox4 is required for the survival of pro-B cells 
The development of mature B cells from hematopoietic stem cells is a strictly orchestrated process involving multiple regulatory genes. The transcription factor Sox4 is required for this process but its role has not been systematically studied, and the underlying mechanisms remain unknown. To determine when and how Sox4 functions in the stepwise process of B cell development, we used mice harboring conditional null alleles for Sox4 and a Cre transgene. Sox4 deletion in hematopoietic stem cells almost entirely eliminated pro-B cells in both fetal livers and adult bone marrow, resulting in a severe deficiency in later stage B cells including circulating mature B cells. Sox4-deficient pro-B cells, particularly those expressing the stem cell factor receptor c-Kit, readily underwent apoptosis, and even more so when c-Kit activity was inhibited by imatinib. C-Kit-expressing pro-B cells showed decreased activation of the c-Kit downstream protein Src upon Sox4 deletion. Likewise, the level of the anti-apoptotic Bcl2 protein was decreased in residual pro-B cells, and its restoration using a Bcl2 transgene not only allowed partial rescue of pro-B cell survival, but also B cell maturation in the absence of Sox4. Our findings indicate that Sox4 is required for the survival of pro-B cells and may functionally interact with c-Kit and Bcl2.
doi:10.4049/jimmunol.1202736
PMCID: PMC3578124  PMID: 23345330
2.  Sox6 Up-Regulation by Macrophage Migration Inhibitory Factor Promotes Survival and Maintenance of Mouse Neural Stem/Progenitor Cells 
PLoS ONE  2013;8(9):e74315.
Macrophage migration inhibitory factor (MIF) has important roles in supporting the proliferation and/or survival of murine neural stem/progenitor cells (NSPCs), but downstream effectors remain unknown. We show here that MIF robustly increases the expression of Sox6 in NSPCs in vitro. During neural development, Sox6 is expressed in the ventricular zone of the ganglionic eminence (GE) of mouse brains at embryonic day 14.5 (E14.5), cultured NSPCs from E14.5 GE, and NSPCs in the subventricular zone (SVZ) around the lateral ventricle (LV) of the adult mouse forebrain. Retroviral overexpression of Sox6 in NSPCs increases the number of primary and secondary neurospheres and inhibits cell differentiation. This effect is accompanied with increased expression of Hes1 and Bcl-2 and Akt phosphorylation, thus suggesting a role for Sox6 in promoting cell survival and/or self-renewal ability. Constitutive activation of the transcription factor Stat3 results in up-regulation of Sox6 expression and chromatin immunoprecipitation analysis showed that MIF increases Stat3 binding to the Sox6 promoter in NSPCs, indicating that Stat3 stimulates Sox6 expression downstream of MIF. Finally, the ability of MIF to increase the number of primary and secondary neurospheres is inhibited by Sox6 gene silencing. Collectively, our data identify Sox6 as an important downstream effector of MIF signaling in stemness maintenance of NSPCs.
doi:10.1371/journal.pone.0074315
PMCID: PMC3774630  PMID: 24066135
3.  Sox9 Directs Hypertrophic Maturation and Blocks Osteoblast Differentiation of Growth Plate Chondrocytes 
Developmental Cell  2012;22(3):597-609.
SUMMARY
The transcription factor Sox9 is necessary for early chondrogenesis, but its subsequent roles in the cartilage growth plate, a highly specialized structure that drives skeletal growth and endochondral ossification, remain unclear. Using a doxycycline-inducible Cre transgene and Sox9 conditional null alleles in the mouse, we show that Sox9 is required to maintain chondrocyte columnar proliferation and generate cell hypertrophy, two key features of functional growth plates. Sox9 keeps Runx2 expression and β-catenin signaling in check, and thereby inhibits not only progression from proliferation to prehypertrophy, but also subsequent acquisition of an osteoblastic phenotype. Sox9 protein outlives Sox9 RNA in upper hypertrophic chondrocytes, where it contributes with Mef2c to directly activate the major marker of these cells, Col10a1. These findings thus reveal that Sox9 remains a central determinant of the lineage fate and multi-step differentiation program of growth plate chondrocytes, and thereby illuminate our understanding of key molecular mechanisms underlying skeletogenesis.
doi:10.1016/j.devcel.2011.12.024
PMCID: PMC3306603  PMID: 22421045
4.  A far-upstream (−70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration 
Nucleic Acids Research  2013;41(8):4459-4469.
SOX9 encodes a transcription factor that presides over the specification and differentiation of numerous progenitor and differentiated cell types, and although SOX9 haploinsufficiency and overexpression cause severe diseases in humans, including campomelic dysplasia, sex reversal and cancer, the mechanisms underlying SOX9 transcription remain largely unsolved. We identify here an evolutionarily conserved enhancer located 70-kb upstream of mouse Sox9 and call it SOM because it specifically activates a Sox9 promoter reporter in most Sox9-expressing somatic tissues in transgenic mice. Moreover, SOM-null fetuses and pups reduce Sox9 expression by 18–37% in the pancreas, lung, kidney, salivary gland, gut and liver. Weanlings exhibit half-size pancreatic islets and underproduce insulin and glucagon, and adults slowly recover from acute pancreatitis due to a 2-fold impairment in Sox9 upregulation. Molecular and genetic experiments reveal that Sox9 protein dimers bind to multiple recognition sites in the SOM sequence and are thereby both necessary and sufficient for enhancer activity. These findings thus uncover that Sox9 directly enhances its functions in somatic tissue development and adult regeneration through SOM-mediated positive auto-regulation. They provide thereby novel insights on molecular mechanisms controlling developmental and disease processes and suggest new strategies to improve disease treatments.
doi:10.1093/nar/gkt140
PMCID: PMC3632127  PMID: 23449223
5.  SOX5 Is a Candidate Gene for Chronic Obstructive Pulmonary Disease Susceptibility and Is Necessary for Lung Development 
Rationale: Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified.
Objectives: We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the potential role of SOX5 in lung development and COPD.
Methods: On chromosome 12p, we genotyped 1,387 SNPs in 386 COPD cases from the National Emphysema Treatment Trial and 424 control smokers from the Normative Aging Study. SNPs with significant associations were then tested in the BEOCOPD study and the International COPD Genetics Network. Based on the human results, we assessed histology and gene expression in the lungs of Sox5−/− mice.
Measurements and Main Results: In the case-control analysis, 27 SNPs were significant at P ≤ 0.01. The most significant SNP in the BEOCOPD replication was rs11046966 (National Emphysema Treatment Trial–Normative Aging Study P = 6.0 × 10−4, BEOCOPD P = 1.5 × 10−5, combined P = 1.7 × 10−7), located 3′ to the gene SOX5. Association with rs11046966 was not replicated in the International COPD Genetics Network. Sox5−/− mice showed abnormal lung development, with a delay in maturation before the saccular stage, as early as E16.5. Lung pathology in Sox5−/− lungs was associated with a decrease in fibronectin expression, an extracellular matrix component critical for branching morphogenesis.
Conclusions: Genetic variation in the transcription factor SOX5 is associated with COPD susceptibility. A mouse model suggests that the effect may be due, in part, to its effects on lung development and/or repair processes.
doi:10.1164/rccm.201010-1751OC
PMCID: PMC3137139  PMID: 21330457
chronic obstructive pulmonary disease; emphysema; knockout mice; lung development; single nucleotide polymorphism
6.  Unraveling the transcriptional regulatory machinery in chondrogenesis 
Since the discovery of SOX9 mutations in the severe human skeletal malformation syndrome campomelic dysplasia in 1994, Sox9 was shown to be both required and sufficient for chondrocyte specification and differentiation. At the same time, its distant relatives Sox5 and Sox6 were shown to act in redundancy with each other to robustly enhance its functions. The Sox trio is currently best known for its ability to activate the genes for cartilage-specific extracellular matrix components. Sox9 and Sox5/6 homodimerize through domains adjacent to their Sry-related high-mobility-group DNA-binding domain to increase the efficiency of their cooperative binding to chondrocyte-specific enhancers. Sox9 possesses a potent transactivation domain and thereby recruits diverse transcriptional co-activators, histone-modifying enzymes, subunits of the mediator complex, and components of the general transcriptional machinery, such as CBP/p300, Med12, Med25, and Wwp2. This information helps us begin to unravel the mechanisms responsible for Sox9-mediated transcription. We review here the discovery of this master chondrogenic trio and its roles in chondrogenesis in vivo and at the molecular level, and we discuss how these pioneering studies open the way for many additional studies that are needed to further increase our understanding of the transcriptional regulatory machinery operating in chondrogenesis.
doi:10.1007/s00774-011-0273-9
PMCID: PMC3354916  PMID: 21594584
Sox9; Sox5; Sox6; Transcription; Chondrogenesis
7.  Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage 
Developmental biology  2010;341(2):346-359.
The mechanisms underlying synovial joint development remain poorly understood. Here we use complete and cell-specific gene inactivation to identify the roles of the redundant chondrogenic transcription factors Sox5 and Sox6 in this process. We show that joint development aborts early in complete mutants (Sox5−/−6−/−). Gdf5 and Wnt9a expression is punctual in articular progenitor cells, but Sox9 downregulation and cell condensation in joint interzones are late. Joint cell differentiation is unsuccessful, regardless of lineage, and cavitation fails. Sox5 and Sox6 restricted expression to chondrocytes in wild-type embryos and continued Erg expression and weak Ihh expression in Sox5−/−6−/− growth plates suggest that growth plate failure contribute to this Sox5−/−6−/− joint morphogenesis block. Sox5/6 inactivation in specified joint cells and chondrocytes (Sox5fl/fl6fl/flCol2Cre) also results in a joint morphogenesis block, whereas Sox5/6 inactivation in specified joint cells only (Sox5fl/fl6fl/flGdf5Cre) results in milder joint defects and normal growth plates. Sox5fl/fl6fl/flGdf5Cre articular chondrocytes remain undifferentiated, as shown by continued Gdf5 expression and pancartilaginous gene downregulation. Along with Prg4 downregulation, these defects likely account for joint tissue overgrowth and incomplete cavitation in adult mice. Together, these data suggest that synovial joint morphogenesis relies on essential roles for Sox5/6 in promoting both growth plate and articular chondrocyte differentiation.
doi:10.1016/j.ydbio.2010.02.024
PMCID: PMC2862098  PMID: 20206616
articular cartilage; development; differentiation; Erg; growth plate; Sox5; Sox6; Sox9; synovial joint; transcription factor
8.  Vertebrate skeletogenesis 
Vertebrate skeletogenesis consists in elaborating an edifice of more than 200 pieces of bone and cartilage. Each skeletal piece is crafted at a distinct location in the body, is articulated with others, and reaches a specific size, shape, and tissue composition according to both species instructions and individual determinants. This complex, customized body frame fulfills multiple essential tasks. It confers morphological features, allows controlled postures and movements, protects vital organs, houses hematopoiesis, stores minerals, and adsorbs toxins. This review provides an overview of the multiple facets of this ingenious process for experts as well as non-experts of skeletogenesis. We explain how the developing vertebrate uses both specific and ubiquitously expressed genes to generate multipotent mesenchymal cells, specify them to a skeletogenic fate, control their survival and proliferation, and direct their differentiation into cartilage, bone and joint cells. We review milestone discoveries made towards uncovering the intricate networks of regulatory factors that are involved in these processes, with an emphasis on signaling pathways and transcription factors. We describe numerous skeletal malformation and degeneration diseases that occur in humans as a result of mutations in regulatory genes, and explain how these diseases both help and motivate us to further decipher skeletogenic processes. Upon discussing current knowledge and gaps in knowledge in the control of skeletogenesis, we highlight ultimate research goals, and propose research priorities and approaches for future endeavors.
doi:10.1016/S0070-2153(10)90008-2
PMCID: PMC3077680  PMID: 20691853
9.  The SoxD transcription factors – Sox5, Sox6, and Sox13 – are key cell fate modulators 
Sox5, Sox6, and Sox13 constitute the group D of sex-determining region (Sry)-related transcription factors. They are highly conserved in the family-specific high-mobility-group (HMG) box DNA-binding domain and in a group-specific coiled-coil domain. The latter mediates SoxD protein dimerization and thereby preferential binding to pairs of DNA recognition sites. The SoxD genes have overlapping expression and cell-autonomously control discrete lineages. Sox5 and Sox6 redundantly enhance chondrogenesis, but retard gliogenesis. Sox5 hinders melanogenesis, promotes neural crest generation, and controls the pace of neurogenesis. Sox6 promotes erythropoiesis, and Sox13 modulates T cell specification and is an autoimmune antigen. SoxD proteins enhance transactivation by Sox9 in chondrocytes, but antagonize Sox9 and other SoxE proteins in oligodendrocytes and melanocytes, and also repress transcription through various mechanisms in several other lineages. While their biological and molecular functions remain incompletely understood, the SoxD proteins have thus already proven that they critically modulate cell fate in major lineages.
doi:10.1016/j.biocel.2009.07.016
PMCID: PMC2826538  PMID: 19647094
Sox5; Sox6; Sox13; cell fate; differentiation
10.  Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits 
BMC Plant Biology  2011;11:16.
Background
Integrating QTL results from independent experiments performed on related species helps to survey the genetic diversity of loci/alleles underlying complex traits, and to highlight potential targets for breeding or QTL cloning. Potato (Solanum tuberosum L.) late blight resistance has been thoroughly studied, generating mapping data for many Rpi-genes (R-genes to Phytophthora infestans) and QTLs (quantitative trait loci). Moreover, late blight resistance was often associated with plant maturity. To get insight into the genomic organization of late blight resistance loci as compared to maturity QTLs, a QTL meta-analysis was performed for both traits.
Results
Nineteen QTL publications for late blight resistance were considered, seven of them reported maturity QTLs. Twenty-one QTL maps and eight reference maps were compiled to construct a 2,141-marker consensus map on which QTLs were projected and clustered into meta-QTLs. The whole-genome QTL meta-analysis reduced by six-fold late blight resistance QTLs (by clustering 144 QTLs into 24 meta-QTLs), by ca. five-fold maturity QTLs (by clustering 42 QTLs into eight meta-QTLs), and by ca. two-fold QTL confidence interval mean. Late blight resistance meta-QTLs were observed on every chromosome and maturity meta-QTLs on only six chromosomes.
Conclusions
Meta-analysis helped to refine the genomic regions of interest frequently described, and provided the closest flanking markers. Meta-QTLs of late blight resistance and maturity juxtaposed along chromosomes IV, V and VIII, and overlapped on chromosomes VI and XI. The distribution of late blight resistance meta-QTLs is significantly independent from those of Rpi-genes, resistance gene analogs and defence-related loci. The anchorage of meta-QTLs to the potato genome sequence, recently publicly released, will especially improve the candidate gene selection to determine the genes underlying meta-QTLs. All mapping data are available from the Sol Genomics Network (SGN) database.
doi:10.1186/1471-2229-11-16
PMCID: PMC3037844  PMID: 21247437
11.  The cell-intrinsic requirement of Sox6 for cortical interneuron development 
Neuron  2009;63(4):466-481.
We describe the role of Sox6 in cortical interneuron development, from a cellular to a behavioral level. We identify Sox6 as a protein expressed continuously within MGE-derived cortical interneurons from postmitotic progenitor stages into adulthood. Both its expression pattern and null phenotype suggests that Sox6 gene function is closely linked to that of Lhx6. In both Lhx6 and Sox6 null animals the expression of PV and SST, as well as the position of both basket and Martinotti neurons are abnormal. We find that Sox6 functions downstream of Lhx6. Electrophysiological analysis of Sox6 mutant cortical interneurons revealed that basket cells, even when mis-positioned, retain characteristic but immature FS physiological features. Our data suggest that Sox6 is not required for the specification of MGE-derived cortical interneurons. It is however, necessary for their normal positioning and maturation. As a consequence, the specific removal of Sox6 from this population results in a severe epileptic encephalopathy.
doi:10.1016/j.neuron.2009.08.005
PMCID: PMC2773208  PMID: 19709629
cortical interneurons; development; genetics; Sox6; Lhx6; Nkx2-1; epilepsy
12.  Sox6 Is Necessary for Efficient Erythropoiesis in Adult Mice under Physiological and Anemia-Induced Stress Conditions 
PLoS ONE  2010;5(8):e12088.
Background
Definitive erythropoiesis is a vital process throughout life. Both its basal activity under physiological conditions and its increased activity under anemia-induced stress conditions are highly stimulated by the hormone erythropoietin. The transcription factor Sox6 was previously shown to enhance fetal erythropoiesis together and beyond erythropoietin signaling, but its importance in adulthood and mechanisms of action remain unknown. We used here Sox6 conditional null mice and molecular assays to address these questions.
Methodology/Principal Findings
Sox6fl/flErGFPCre adult mice, which lacked Sox6 in erythroid cells, exhibited compensated anemia, erythroid cell developmental defects, and anisocytotic, short-lived red cells under physiological conditions, proving that Sox6 promotes basal erythropoiesis. Tamoxifen treatment of Sox6fl/flCaggCreER mice induced widespread inactivation of Sox6 in a timely controlled manner and resulted in erythroblast defects before reticulocytosis, demonstrating that impaired erythropoiesis is a primary cause rather than consequence of anemia in the absence of Sox6. Twenty five percent of Sox6fl/flErGFPCre mice died 4 or 5 days after induction of acute anemia with phenylhydrazine. The others recovered slowly. They promptly increased their erythropoietin level and amplified their erythroid progenitor pool, but then exhibited severe erythroblast and reticulocyte defects. Sox6 is thus essential in the maturation phase of stress erythropoiesis that follows the erythropoietin-dependent amplification phase. Sox6 inactivation resulted in upregulation of embryonic globin genes, but embryonic globin chains remained scarce and apparently inconsequential. Sox6 inactivation also resulted in downregulation of erythroid terminal markers, including the Bcl2l1 gene for the anti-apoptotic factor Bcl-xL, and in vitro assays indicated that Sox6 directly upregulates Bcl2l1 downstream of and beyond erythropoietin signaling.
Conclusions/Significance
This study demonstrates that Sox6 is necessary for efficient erythropoiesis in adult mice under both basal and stress conditions. It is primarily involved in enhancing the survival rate and maturation process of erythroid cells and acts at least in part by upregulating Bcl2l1.
doi:10.1371/journal.pone.0012088
PMCID: PMC2918505  PMID: 20711497
13.  Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors 
During organogenesis, neural and mesenchymal progenitor cells give rise to many cell lineages, but their molecular requirements for self-renewal and lineage decisions are incompletely understood. In this study, we show that their survival critically relies on the redundantly acting SoxC transcription factors Sox4, Sox11 and Sox12. The more SoxC alleles that are deleted in mouse embryos, the more severe and widespread organ hypoplasia is. SoxC triple-null embryos die at midgestation unturned and tiny, with normal patterning and lineage specification, but with massively dying neural and mesenchymal progenitor cells. Specific inactivation of SoxC genes in neural and mesenchymal cells leads to selective apoptosis of these cells, suggesting SoxC cell-autonomous roles. Tead2 functionally interacts with SoxC genes in embryonic development, and is a direct target of SoxC proteins. SoxC genes therefore ensure neural and mesenchymal progenitor cell survival, and function in part by activating this transcriptional mediator of the Hippo signalling pathway.
doi:10.1038/ncomms1008
PMCID: PMC2892298  PMID: 20596238
14.  L-Sox5 and Sox6 Drive Expression of the Aggrecan Gene in Cartilage by Securing Binding of Sox9 to a Far-Upstream Enhancer ▿  
Molecular and Cellular Biology  2008;28(16):4999-5013.
The Sry-related high-mobility-group box transcription factor Sox9 recruits the redundant L-Sox5 and Sox6 proteins to effect chondrogenesis, but the mode of action of the trio remains unclear. We identify here a highly conserved 359-bp sequence 10 kb upstream of the Agc1 gene for aggrecan, a most essential cartilage proteoglycan and key marker of chondrocyte differentiation. This sequence directs expression of a minimal promoter in both embryonic and adult cartilage in transgenic mice, in a manner that matches Agc1 expression. The chondrogenic trio is required and sufficient to mediate the activity of this enhancer. It acts directly, Sox9 binding to a critical cis-acting element and L-Sox5/Sox6 binding to three additional elements, which are cooperatively needed. Upon binding to their specific sites, L-Sox5/Sox6 increases the efficiency of Sox9 binding to its own recognition site and thereby robustly potentiates the ability of Sox9 to activate the enhancer. L-Sox5/Sox6 similarly secures Sox9 binding to Col2a1 (encoding collagen-2) and other cartilage-specific enhancers. This study thus uncovers critical cis-acting elements and transcription factors driving Agc1 expression in cartilage and increases understanding of the mode of action of the chondrogenic Sox trio.
doi:10.1128/MCB.00695-08
PMCID: PMC2519711  PMID: 18559420
15.  The three SoxC proteins—Sox4, Sox11 and Sox12—exhibit overlapping expression patterns and molecular properties 
Nucleic Acids Research  2008;36(9):3101-3117.
The group C of Sry-related high-mobility group (HMG) box (Sox) transcription factors has three members in most vertebrates: Sox4, Sox11 and Sox12. Sox4 and Sox11 have key roles in cardiac, neuronal and other major developmental processes, but their molecular roles in many lineages and the roles of Sox12 remain largely unknown. We show here that the three genes are co-expressed at high levels in neuronal and mesenchymal tissues in the developing mouse, and at variable relative levels in many other tissues. The three proteins have conserved remarkable identity through evolution in the HMG box DNA-binding domain and in the C-terminal 33 residues, and we demonstrate that the latter residues constitute their transactivation domain (TAD). Sox11 activates transcription several times more efficiently than Sox4 and up to one order of magnitude more efficiently than Sox12, owing to a more stable α-helical structure of its TAD. This domain and acidic domains interfere with DNA binding, Sox11 being most affected and Sox4 least affected. The proteins are nevertheless capable of competing with one another in reporter gene transactivation. We conclude that the three SoxC proteins have conserved overlapping expression patterns and molecular properties, and might therefore act in concert to fulfill essential roles in vivo.
doi:10.1093/nar/gkn162
PMCID: PMC2396431  PMID: 18403418
16.  Control of Cell Fate and Differentiation by Sry-related High-mobility-group Box (Sox) Transcription Factors 
Maintain stemness, commit to a specific lineage, differentiate, proliferate, or die. These are essential decisions that every cell is constantly challenged to make in multi-cellular organisms to ensure proper development, adult maintenance, and adaptability. SRY-related high-mobility-group box (Sox) transcription factors have emerged in the animal kingdom to help cells effect such decisions. They are encoded by twenty genes in humans and mice. They share a highly conserved high-mobility-group box domain that was originally identified in SRY, the sex-determining gene on the Y chromosome, and that has derived from a canonical high-mobility-group domain characteristic of chromatin-associated proteins. The high-mobility-group box domain binds DNA in the minor groove and increases its DNA binding affinity and specificity by interacting with many types of transcription factors. It also bends DNA and may thereby confer on Sox proteins a unique and critical role in the assembly of transcriptional enhanceosomes. Sox proteins fall into eight groups. Most feature a transactivation or transrepression domain and thereby also act as typical transcription factors. Each gene has distinct expression pattern and molecular properties, often redundant with those in the same group and overlapping with those in other groups. As a whole the Sox family controls cell fate and differentiation in a multitude of processes, such as male differentiation, stemness, neurogenesis, and skeletogenesis. We review their specific molecular properties and in vivo roles, stress recent advances in the field, and suggest directions for future investigations.
doi:10.1016/j.biocel.2007.05.019
PMCID: PMC2080623  PMID: 17625949
Sox; transcription factor; stem cell; differentiation; HMG
17.  The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth 
Journal of Clinical Investigation  2005;115(3):622-631.
The long-term integrity of an articulating joint is dependent upon the nourishment of its cartilage component and the protection of the cartilage surface from friction-induced wear. Loss-of-function mutations in lubricin (a secreted glycoprotein encoded by the gene PRG4) cause the human autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP). A major feature of CACP is precocious joint failure. In order to delineate the mechanism by which lubricin protects joints, we studied the expression of Prg4 mRNA during mouse joint development, and we created lubricin-mutant mice. Prg4 began to be expressed in surface chondrocytes and synoviocytes after joint cavitation had occurred and remained strongly expressed by these cells postnatally. Mice lacking lubricin were viable and fertile. In the newborn period, their joints appeared normal. As the mice aged, we observed abnormal protein deposits on the cartilage surface and disappearance of underlying superficial zone chondrocytes. In addition to cartilage surface changes and subsequent cartilage deterioration, intimal cells in the synovium surrounding the joint space became hyperplastic, which further contributed to joint failure. Purified or recombinant lubricin inhibited the growth of these synoviocytes in vitro. Tendon and tendon sheath involvement was present in the ankle joints, where morphologic changes and abnormal calcification of these structures were observed. We conclude that lubricin has multiple functions in articulating joints and tendons that include the protection of surfaces and the control of synovial cell growth.
doi:10.1172/JCI200522263
PMCID: PMC548698  PMID: 15719068
18.  Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate 
The Journal of Cell Biology  2004;164(5):747-758.
Sox5 and Sox6 encode Sry-related transcription factors that redundantly promote early chondroblast differentiation. Using mouse embryos with three or four null alleles of Sox5 and Sox6, we show that they are also essential and redundant in major steps of growth plate chondrocyte differentiation. Sox5 and Sox6 promote the development of a highly proliferating pool of chondroblasts between the epiphyses and metaphyses of future long bones. This pool is the likely cellular source of growth plates. Sox5 and Sox6 permit formation of growth plate columnar zones by keeping chondroblasts proliferating and by delaying chondrocyte prehypertrophy. They allow induction of chondrocyte hypertrophy and permit formation of prehypertrophic and hypertrophic zones by delaying chondrocyte terminal differentiation induced by ossification fronts. They act, at least in part, by down-regulating Ihh signaling, Fgfr3, and Runx2 and by up-regulating Bmp6. In conclusion, Sox5 and Sox6 are needed for the establishment of multilayered growth plates, and thereby for proper and timely development of endochondral bones.
doi:10.1083/jcb.200312045
PMCID: PMC2172159  PMID: 14993235
chondrogenesis; development; differentiation; mouse; transcription factor
20.  Phosphorylation of SOX9 by Cyclic AMP-Dependent Protein Kinase A Enhances SOX9's Ability To Transactivate a Col2a1 Chondrocyte-Specific Enhancer 
Molecular and Cellular Biology  2000;20(11):4149-4158.
Sox9 is a high-mobility-group domain-containing transcription factor required for chondrocyte differentiation and cartilage formation. We used a yeast two-hybrid method based on Son of Sevenless (SOS) recruitment to screen a chondrocyte cDNA library and found that the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA-Cα) interacted specifically with SOX9. Next we found that two consensus PKA phosphorylation sites within SOX9 could be phosphorylated by PKA in vitro and that SOX9 could be phosphorylated by PKA-Cα in vivo. In COS-7 cells cotransfected with PKA-Cα and SOX9 expression plasmids, PKA enhanced the phosphorylation of wild-type SOX9 but did not affect phosphorylation of a SOX9 protein in which the two PKA phosphorylation sites (S64 and S211) were mutated. Using a phosphospecific antibody that specifically recognized SOX9 phosphorylated at serine 211, one of the two PKA phosphorylation sites, we demonstrated that addition of cAMP to chondrocytes strongly increased the phosphorylation of endogenous Sox9. In addition, immunohistochemistry of mouse embryo hind legs showed that Sox9 phosphorylated at serine 211 was principally localized in the prehypertrophic zone of the growth plate, corresponding to the major site of expression of the parathyroid hormone-related peptide (PTHrP) receptor. Since cAMP has previously been shown to effectively increase the mRNA levels of Col2a1 and other specific markers of chondrocyte differentiation in culture, we then asked whether PKA phosphorylation could modulate the activity of SOX9. Addition of 8-bromo-cAMP to chondrocytes in culture increased the activity of a transiently transfected SOX9-dependent 48-bp Col2a1 chondrocyte-specific enhancer; similarly, cotransfection of PKA-Cα increased the activity of this enhancer. Mutations of the two PKA phosphorylation consensus sites of SOX9 markedly decreased the PKA-Cα activation of this enhancer by SOX9. PKA phosphorylation and the mutations in the consensus PKA phosphorylation sites of SOX9 did not alter its nuclear localization. In vitro phosphorylation of SOX9 by PKA resulted in more efficient DNA binding. We conclude that SOX9 is a target of cAMP signaling and that phosphorylation of SOX9 by PKA enhances its transcriptional and DNA-binding activity. Because PTHrP signaling is mediated by cAMP, our results support the hypothesis that Sox9 is a target of PTHrP signaling in the growth plate and that the increased activity of Sox9 might mediate the effect of PTHrP in maintaining the cells as nonhypertrophic chondrocytes.
PMCID: PMC85784  PMID: 10805756
21.  Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors 
Nature Communications  2010;1(1):1-12.
During organogenesis, neural and mesenchymal progenitor cells give rise to many cell lineages, but their molecular requirements for self-renewal and lineage decisions are incompletely understood. In this study, we show that their survival critically relies on the redundantly acting SoxC transcription factors Sox4, Sox11 and Sox12. The more SoxC alleles that are deleted in mouse embryos, the more severe and widespread organ hypoplasia is. SoxC triple-null embryos die at midgestation unturned and tiny, with normal patterning and lineage specification, but with massively dying neural and mesenchymal progenitor cells. Specific inactivation of SoxC genes in neural and mesenchymal cells leads to selective apoptosis of these cells, suggesting SoxC cell-autonomous roles. Tead2 functionally interacts with SoxC genes in embryonic development, and is a direct target of SoxC proteins. SoxC genes therefore ensure neural and mesenchymal progenitor cell survival, and function in part by activating this transcriptional mediator of the Hippo signalling pathway.
During development Sox transcription factors play important roles in the determination of cell fate. In this study Bhattaram and colleagues show that Sox4, Sox11 and Sox12 act redundantly in mouse development and are important for the maintenance of neural and mesenchymal progenitor cells.
doi:10.1038/ncomms1008
PMCID: PMC2892298  PMID: 20596238

Results 1-21 (21)