Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Direct Tandem Mass Spectrometric Profiling of Sulfatides in Dry Urinary Samples for Screening of Metachromatic Leukodystrophy 
Prediagnostic steps in suspected metachromatic leukodystrophy (MLD) rely onclinical chemical methods other than enzyme assays. We report a new diagnostic method which evaluates changes in the spectrum of molecular types of sulfatides (3-O-sulfogalactosyl ceramides) in MLD urine.
The procedure allows isolation of urinary sulfatides by solid-phase extraction on DEAE-cellulose membranes, transportation of a dry membrane followed by elution and tandem mass spectrometry (MS/MS) analysis in the clinical laboratory. Major sulfatide isoforms are normalized to the least variable component of the spectrum, which is the indigenous C18:0 isoform. This procedure does not require the use of specific internal standards and minimizes errors caused by sample preparation and measurement.
Urinary sulfatides were analyzed in a set of 21 samples from patients affected by sulfatidosis. The combined abundance of the five most elevated isoforms, C22:0, C22:0-OH, C24:0, C24:1-OH, and C24:0-OH sulfatides, was found to give the greatest distinction between MLD-affected patients and a control group.
The method avoids transportation of liquid urine samples and generates stable membrane-bound sulfatide samples that can be stored at ambient temperature. MS/MS sulfatide profiling targeted on the most MLD-representative isoforms is simple with robust results and is suitable for screening.
PMCID: PMC3806293  PMID: 23838369
urinary sulfatide; isoforms; screening for metachromatic leukodystrophy; tandem mass spectrometry; DEAE-cellulose membrane; dry urinary samples
2.  The birth prevalence of lysosomal storage disorders in the Czech Republic: comparison with data in different populations 
The aim of this retrospective study was to determine the prevalence of lysosomal storage disorders (LSDs) in the Czech Republic. The data on cases diagnosed between 1975 and 2008 were collected and analyzed. The overall prevalence of LSDs in the Czech population (12.25 per 100,000) is comparable to that reported for the countries with well-established and advanced diagnostics of LSDs such as the Netherlands (14 per 100,000), Australia (12.9 per 100,000) and Italy (12.1 per 100,000). Relatively higher prevalence of LSDs was reported in the north of Portugal (25 per 100,000). Thirty-four different LSDs were diagnosed in a total of 478 individuals. Gaucher disease was the most frequent LSD with a birth prevalence of 1.13 per 100,000 births. The most frequent LSD groups were lipidoses, mucopolysaccharidoses, and neuronal ceroid lipofuscinoses, with combined prevalences of 5.0, 3.72, and 2.29 per 100,000 live births, respectively. Glycoproteinoses (0.57 per 100,000 live births), glycogenosis type II (0.37), and mucolipidoses (0.31) rarely occur in the Czech population, and a range of other LSDs have not been detected at all over the past three decades. Knowledge of the birth prevalence and carrier frequency of particular disorders is important in genetic counselling for calculation of the risk for the disorder in the other members of affected families. Earlier diagnosis of these disorders will permit timely intervention and may also result in lowering of the number of newborns with LSDs.
PMCID: PMC2903693  PMID: 20490927
3.  Replacement of α-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients 
Virchows Archiv  2008;452(6):651-665.
The function and intracellular delivery of enzyme therapeutics for Fabry disease were studied in cultured fibroblasts and in the biopsied tissues of two male patients to show diversity of affected cells in response to treatment. In the mutant fibroblasts cultures, the final cellular level of endocytosed recombinant α-galactosidases A (agalsidases, FabrazymeTM, and ReplagalTM) exceeded, by several fold, the amount in control fibroblasts and led to efficient direct intra-lysosomal hydrolysis of (3H)Gb3Cer. In contrast, in the samples from the heart and some other tissues biopsied after several months of enzyme replacement therapy (ERT) with FabrazymeTM, only the endothelial cells were free of storage. Persistent Gb3Cer storage was found in cardiocytes (accompanied by increase of lipopigment), smooth muscle cells, fibroblasts, sweat glands, and skeletal muscle. Immunohistochemistry of cardiocytes demonstrated, for the first time, the presence of a considerable amount of the active enzyme in intimate contact with the storage compartment. Factors responsible for the limited ERT effectiveness are discussed, namely post-mitotic status of storage cells preventing their replacement by enzyme supplied precursors, modification of the lysosomal system by longstanding storage, and possible relative lack of Sap B. These observations support the strategy of early treatment for prevention of lysosomal storage.
PMCID: PMC2956889  PMID: 18351385
α-Galactosidase A deficiency; Enzyme replacement therapy; Persistent storage; Enzyme targeting; Clearance of storage lysosomes
4.  Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate α-galactosidase and α-N-acetylgalactosaminidase 
BMC Cell Biology  2005;6:5.
Human α-galactosidase A (α-GAL) and α-N-acetylgalactosaminidase (α-NAGA) are presumed to share a common ancestor. Deficiencies of these enzymes cause two well-characterized human lysosomal storage disorders (LSD) – Fabry (α-GAL deficiency) and Schindler (α-NAGA deficiency) diseases. Caenorhabditis elegans was previously shown to be a relevant model organism for several late endosomal/lysosomal membrane proteins associated with LSDs. The aim of this study was to identify and characterize C. elegans orthologs to both human lysosomal luminal proteins α-GAL and α-NAGA.
BlastP searches for orthologs of human α-GAL and α-NAGA revealed a single C. elegans gene (R07B7.11) with homology to both human genes (α-galactosidase and α-N-acetylgalactosaminidase) – gana-1. We cloned and sequenced the complete gana-1 cDNA and elucidated the gene organization.
Phylogenetic analyses and homology modeling of GANA-1 based on the 3D structure of chicken α-NAGA, rice α-GAL and human α-GAL suggest a close evolutionary relationship of GANA-1 to both human α-GAL and α-NAGA.
Both α-GAL and α-NAGA enzymatic activities were detected in C. elegans mixed culture homogenates. However, α-GAL activity on an artificial substrate was completely inhibited by the α-NAGA inhibitor, N-acetyl-D-galactosamine.
A GANA-1::GFP fusion protein expressed from a transgene, containing the complete gana-1 coding region and 3 kb of its hypothetical promoter, was not detectable under the standard laboratory conditions. The GFP signal was observed solely in a vesicular compartment of coelomocytes of the animals treated with Concanamycin A (CON A) or NH4Cl, agents that increase the pH of the cellular acidic compartment.
Immunofluorescence detection of the fusion protein using polyclonal anti-GFP antibody showed a broader and coarsely granular cytoplasmic expression pattern in body wall muscle cells, intestinal cells, and a vesicular compartment of coelomocytes.
Inhibition of gana-1 by RNA interference resulted in a decrease of both α-GAL and α-NAGA activities measured in mixed stage culture homogenates but did not cause any obvious phenotype.
GANA-1 is a single C. elegans ortholog of both human α-GAL and α-NAGA proteins. Phylogenetic, homology modeling, biochemical and GFP expression analyses support the hypothesis that GANA-1 has dual enzymatic activity and is localized in an acidic cellular compartment.
PMCID: PMC548690  PMID: 15676072
5.  Prosaposin Deficiency and Saposin B Deficiency (Activator-Deficient Metachromatic Leukodystrophy): Report on Two Patients Detected by Analysis of Urinary Sphingolipids and Carrying Novel PSAP Gene Mutations 
Prosaposin deficiency (pSap-d) and saposin B deficiency (SapB-d) are both lipid storage disorders caused by mutations in the PSAP gene that codes for the 65–70 kDa prosaposin protein, which is the precursor for four sphingolipid activator proteins, saposins A–D. We report on two new patients with PSAP gene defects; one, with pSap-d, who had a severe neurovisceral dystrophy and died as a neonate, and the other with SapB-d, who presented with a metachromatic leukodystrophy-like disorder but had normal arylsulfatase activity. Screening for urinary sphingolipids was crucial to the diagnosis of both patients, with electrospray ionization tandem mass spectrometry also providing quantification. The pSap-d patient is the first case with this condition where urinary sphingolipids have been investigated. Multiple sphingolipids were elevated, with globotriaosylceramide showing the greatest increase. Both patients had novel mutations in the PSAP gene. The pSap-d patient was homozygous for a splice-acceptor site mutation two bases upstream of exon 10. This mutation led to a premature stop codon and yielded low levels of transcript. The SapB-d patient was a compound heterozygote with a splice-acceptor site variant exclusively affecting the SapB domain on one allele, and a 2 bp deletion leading to a null, that is, pSap-d mutation, on the other allele. Phenotypically, pSap-d is a relatively uniform disease of the neonate, whereas SapB-d is heterogeneous with a spectrum similar to that in metachromatic leukodystrophy. The possible existence of genotypes and phenotypes intermediate between those of pSap-d and the single saposin deficiencies is speculated. © 2009 Wiley-Liss, Inc.
PMCID: PMC3437469  PMID: 19267410
sphingolipid activator proteins; prosaposin; urinary lipids; mass spectrometry; PSAP gene; saposin deficiency; metachromatic leukodystrophy

Results 1-5 (5)