Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface 
From fundamental studies to industrial processes, synthesis of heterologous protein by micro-organisms is widely employed. The secretion of soluble heterologous proteins in the extracellular medium facilitates their recovery, while their attachment to the cell surface permits the use of the recombinant host cells as protein or peptide supports. One of the key points to carry out heterologous expression is to choose the appropriate host. We propose to enlarge the panel of heterologous secretion hosts by using Streptococcus thermophilus LMD-9. This lactic acid bacterium has a generally recognised as safe status, is widely used in the manufacture of yogurts, fermented milks and cheeses, and is easy to transform by natural competence. This study demonstrates the feasibility of secretion of a heterologous protein anchored to the cell surface by S. thermophilus. For this, we used the cell envelope proteinase (CEP) PrtH of Lactobacillus helveticus CNRZ32 CIRM-BIA 103.
Using S. thermophilus LMD-9 as the background host, three recombinant strains were constructed: i) a negative control corresponding to S. thermophilus PrtS- mutant where the prtS gene encoding its CEP was partially deleted; ii) a PrtH+ mutant expressing the L. helveticus PrtH pro-protein with its own motif (S-layer type) of cell-wall attachment and iii) a PrtH+WANS mutant expressing PrtH pro-protein with the LPXTG anchoring motif from PrtS. The PrtH + and PrtH + WANS genes expression levels were measured by RT-qPCR in the corresponding mutants and compared to that of prtS gene in the strain LMD-9. The expression levels of both fused prtH CEPs genes, regardless of the anchoring motif, reached up-to more than 76% of the wild-type prtS expression level. CEPs were sought and identified on the cell surface of LMD-9 wild-type strain, PrtH+ and PrtH+WANS mutants using shaving technique followed by peptide identification with tandem mass spectrometry, demonstrating that the heterologous secretion and anchoring of a protein of more than 200 kDa was efficient. The anchoring to the cell-wall seems to be more efficient when the LPXTG motif of PrtS was used instead of the S-layer motif of PrtH.
We demonstrated S. thermophilus LMD-9 could heterologously secrete a high molecular weight protein and probably covalently anchor it to the cell-wall.
PMCID: PMC4076053  PMID: 24902482
Heterologous expression; Secretion; Cell-wall anchored protein; Streptococcus thermophilus LMD-9; Cell envelope proteinase (CEP); PrtS; PrtH; Lactobacillus helveticus CNRZ32 CIRM-BIA 103
2.  Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511 
BMC Microbiology  2010;10:204.
The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation.
The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure.
Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes.
PMCID: PMC2921402  PMID: 20670397

Results 1-2 (2)