PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Draft Genome Sequence of the Gammaproteobacterial Strain MOLA455, a Representative of a Ubiquitous Proteorhodopsin-Producing Group in the Ocean 
Genome Announcements  2014;2(1):e01203-13.
Strain MOLA455 is a marine gammaproteobacterium isolated from the bay of Banyuls-sur-Mer, France. Here, we present its genome sequence and annotation. Genome analysis revealed the presence of genes associated with a possibly photoheterotrophic lifestyle that uses a proteorhodopsin protein.
doi:10.1128/genomeA.01203-13
PMCID: PMC3907726  PMID: 24482511
2.  Genome Sequence of Strain MOLA814, a Proteorhodopsin-Containing Representative of the Betaproteobacteria Common in the Ocean 
Genome Announcements  2013;1(6):e01062-13.
Strain MOLA814 is a marine betaproteobacterium that was isolated from seawater in the Beaufort Sea. Here, we present its genome sequence and annotation. Genome analysis revealed the presence of a proteorhodopsin-encoding sequence together with its retinal-producing pathway, indicating that this strain might generate energy by using light.
doi:10.1128/genomeA.01062-13
PMCID: PMC3868856  PMID: 24356832
3.  A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe 
Scientific Reports  2013;3:2583.
Crambe crambe is a marine sponge that produces high concentrations of the pharmacologically significant pentacyclic guanidine alkaloids (PGAs), Crambescines and Crambescidines. Although bio-mimetic chemical synthesis of PGAs suggests involvement of microorganisms in their biosynthesis, there are conflicting reports on whether bacteria are associated with this sponge or not. Using 16S rRNA gene pyrosequencing we show that the associated bacterial community of C. crambe is dominated by a single bacterial species affiliated to the Betaproteobacteria. Microscopy analysis of sponge tissue sections using a specific probe and in situ hybridization confirmed its dominance in the sponge mesohyl and a single microbial morphology was observed by transmission electron microscopy. If confirmed the presence of a simple bacteria community in C. crambe makes this association a very pertinent model to study sponge-bacteria interactions and should allow further research into the possible implication of bacteria in PGA biosynthesis.
doi:10.1038/srep02583
PMCID: PMC3761228  PMID: 24002533
4.  Shotgun Redox Proteomics: Identification and Quantitation of Carbonylated Proteins in the UVB-Resistant Marine Bacterium, Photobacterium angustum S14 
PLoS ONE  2013;8(7):e68112.
UVB oxidizes proteins through the generation of reactive oxygen species. One consequence of UVB irradiation is carbonylation, the irreversible formation of a carbonyl group on proline, lysine, arginine or threonine residues. In this study, redox proteomics was performed to identify carbonylated proteins in the UVB resistant marine bacterium Photobacterium angustum. Mass-spectrometry was performed with either biotin-labeled or dinitrophenylhydrazide (DNPH) derivatized proteins. The DNPH redox proteomics method enabled the identification of 62 carbonylated proteins (5% of 1221 identified proteins) in cells exposed to UVB or darkness. Eleven carbonylated proteins were quantified and the UVB/dark abundance ratio was determined at both the protein and peptide levels. As a result we determined which functional classes of proteins were carbonylated, which residues were preferentially modified, and what the implications of the carbonylation were for protein function. As the first large scale, shotgun redox proteomics analysis examining carbonylation to be performed on bacteria, our study provides a new level of understanding about the effects of UVB on cellular proteins, and provides a methodology for advancing studies in other biological systems.
doi:10.1371/journal.pone.0068112
PMCID: PMC3706606  PMID: 23874515
5.  Proteome Analysis of the UVB-Resistant Marine Bacterium Photobacterium angustum S14 
PLoS ONE  2012;7(8):e42299.
The proteome of the marine bacterium Photobacterium angustum S14 was exposed to UVB and analyzed by the implementation of both the post-digest ICPL labeling method and 2D-DIGE technique using exponentially growing cells. A total of 40 and 23 proteins were quantified in all replicates using either the ICPL or 2D-DIGE methods, respectively. By combining both datasets from 8 biological replicates (4 biological replicates for each proteomics technique), 55 proteins were found to respond significantly to UVB radiation in P. angustum. A total of 8 UVB biomarkers of P. angustum were quantified in all replicates using both methods. Among them, the protein found to present the highest increase in abundance (almost a 3-fold change) was RecA, which is known to play a crucial role in the so-called recombinational repair process. We also observed a high number of antioxidants, transport proteins, metabolism-related proteins, transcription/translation regulators, chaperonins and proteases. We also discuss and compare the UVB response and global protein expression profiles obtained for two different marine bacteria with trophic lifestyles: the copiotroph P. angustum and oligotroph Sphingopyxis alaskensis.
doi:10.1371/journal.pone.0042299
PMCID: PMC3411663  PMID: 22870314
6.  A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean 
The ISME journal  2010;5(6):933-944.
A novel high-light (HL)-adapted Prochlorococcus clade was discovered in high nutrient and low chlorophyll (HNLC) waters in the South Pacific Ocean by phylogenetic analyses of 16S ribosomal RNA (rRNA) and 16S–23S internal transcribed spacer (ITS) sequences. This clade, named HNLC fell within the HL-adapted Prochlorococcus clade with sequences above 99% similarity to one another, and was divided into two subclades, HNLC1 and HNLC2. The distribution of the whole HNLC clade in a northwest to southeast transect in the South Pacific (HNLC-to-gyre) and two 8°N to 8°S transects in the Equatorial Pacific was determined by quantitative PCR using specific primers targeting ITS regions. HNLC was the dominant HL Prochlorococcus clade (2–9% of bacterial 16S rRNA genes) at the three westernmost stations in the South Pacific but decreased to less than 0.1% at the other stations being replaced by the eMIT9312 ecotype in the hyperoligotrophic gyre. The highest contributions of HNLC Prochlorococcus in both Equatorial Pacific transects along the latitudinal lines of 170°W and 155°W were observed at the southernmost stations, reaching 16 and 6% of bacterial 16S rRNA genes, respectively, whereas eMIT9312 dominated near the Equator. Spearman Rank Order correlation analysis indicated that although both the HNLC clade and eMIT9312 were correlated with temperature, they showed different correlations with regard to nutrients. HNLC only showed significant correlations to ammonium uptake and regeneration rates, whereas eMIT9312 was negatively correlated with inorganic nutrients.
doi:10.1038/ismej.2010.186
PMCID: PMC3131852  PMID: 21124492
16S rRNA; Equatorial Pacific; HNLC; ITS; Prochlorococcus; qPCR
7.  High Abundances of Aerobic Anoxygenic Photosynthetic Bacteria in the South Pacific Ocean▿  
Applied and Environmental Microbiology  2007;73(13):4198-4205.
Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 × 105 cells ml−1 and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 × 10−3 μg liter−1) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.
doi:10.1128/AEM.02652-06
PMCID: PMC1932784  PMID: 17496136
8.  Resistance of Marine Bacterioneuston to Solar Radiation 
A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for γ-proteobacteria and 14% and 8% for α-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the γ-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria.
doi:10.1128/AEM.71.9.5282-5289.2005
PMCID: PMC1214640  PMID: 16151115
9.  Rapid Detection and Enumeration of Legionella pneumophila in Hot Water Systems by Solid-Phase Cytometry 
A new method for the rapid and sensitive detection of Legionella pneumophila in hot water systems has been developed. The method is based on an IF assay combined with detection by solid-phase cytometry. This method allowed the enumeration of L. pneumophila serogroup 1 and L. pneumophila serogroups 2 to 6, 8 to 10, and 12 to 15 in tap water samples within 3 to 4 h. The sensitivity of the method was between 10 and 100 bacteria per liter and was principally limited by the filtration capacity of membranes. The specificity of the antibody was evaluated against 15 non-Legionella strains, and no cross-reactivity was observed. When the method was applied to natural waters, direct counts of L. pneumophila were compared with the number of CFU obtained by the standard culture method. Direct counts were always higher than culturable counts, and the ratio between the two methods ranged from 1.4 to 325. Solid-phase cytometry offers a fast and sensitive alternative to the culture method for L. pneumophila screening in hot water systems.
doi:10.1128/AEM.70.3.1651-1657.2004
PMCID: PMC368404  PMID: 15006790
10.  Microbial Biodiversity: Approaches to Experimental Design and Hypothesis Testing in Primary Scientific Literature from 1975 to 1999 
Research interest in microbial biodiversity over the past 25 years has increased markedly as microbiologists have become interested in the significance of biodiversity for ecological processes and as the industrial, medical, and agricultural applications of this diversity have evolved. One major challenge for studies of microbial habitats is how to account for the diversity of extremely large and heterogeneous populations with samples that represent only a very small fraction of these populations. This review presents an analysis of the way in which the field of microbial biodiversity has exploited sampling, experimental design, and the process of hypothesis testing to meet this challenge. This review is based on a systematic analysis of 753 publications randomly sampled from the primary scientific literature from 1975 to 1999 concerning the microbial biodiversity of eight habitats related to water, soil, plants, and food. These publications illustrate a dominant and growing interest in questions concerning the effect of specific environmental factors on microbial biodiversity, the spatial and temporal heterogeneity of this biodiversity, and quantitative measures of population structure for most of the habitats covered here. Nevertheless, our analysis reveals that descriptions of sampling strategies or other information concerning the representativeness of the sample are often missing from publications, that there is very limited use of statistical tests of hypotheses, and that only a very few publications report the results of multiple independent tests of hypotheses. Examples are cited of different approaches and constraints to experimental design and hypothesis testing in studies of microbial biodiversity. To prompt a more rigorous approach to unambiguous evaluation of the impact of microbial biodiversity on ecological processes, we present guidelines for reporting information about experimental design, sampling strategies, and analyses of results in publications concerning microbial biodiversity.
doi:10.1128/MMBR.66.4.592-616.2002
PMCID: PMC134657  PMID: 12456784
11.  Rapid Detection and Enumeration of Naegleria fowleri in Surface Waters by Solid-Phase Cytometry 
A new method for the rapid and accurate detection of pathogenic Naegleria fowleri amoebae in surface environmental water was developed. The method is based on an immunofluorescent assay combined with detection by solid-phase cytometry. In this study we developed and compared two protocols using different reporter systems conjugated to antibodies. The monoclonal antibody Ac5D12 was conjugated with biotin and horseradish peroxidase, and the presence of cells was revealed with streptavidin conjugated to both R-phycoerythrin and cyanine Cy5 (RPE-Cy5) and tyramide-fluorescein isothiocyanate, respectively. The RPE-Cy5 protocol was the most efficient protocol and allowed the detection of both trophozoite and cyst forms in water. The direct counts obtained by this new method were not significantly different from those obtained by the traditional culture approach, and results were provided within 3 h. The sensitivity of the quantitative method is 200 cells per liter. The limit is due only to the filtration capacity of the membrane used.
doi:10.1128/AEM.68.6.3102-3107.2002
PMCID: PMC123984  PMID: 12039772
12.  Does the High Nucleic Acid Content of Individual Bacterial Cells Allow Us To Discriminate between Active Cells and Inactive Cells in Aquatic Systems? 
The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.
doi:10.1128/AEM.67.4.1775-1782.2001
PMCID: PMC92796  PMID: 11282632
13.  Diversity of Salmonella Strains Isolated from the Aquatic Environment as Determined by Serotyping and Amplification of the Ribosomal DNA Spacer Regions 
Salmonella species are pathogenic bacteria often detected in sewage, freshwater, marine coastal water, and groundwater. Salmonella spp. can survive for long periods in natural waters, and the persistence of specific and epidemic strains is of great concern in public health. However, the diversity of species found in the natural environment remains unknown. The aim of this study was to investigate the diversity of Salmonella strains isolated from different natural aquatic systems within a Mediterranean coastal watershed (river, wastewater, and marine coastal areas). A total of 574 strains isolated from these natural environments were identified by both conventional serotyping and the ribosomal spacer-heteroduplex polymorphism (RS-HP) method (M. A. Jensen and N. Straus, PCR Methods Appl. 3:186–194, 1993). More than 40 different serotypes were found, and some serotypes probably mobilized from widespread animal-rearing activities were detected only during storm events. These serotypes may be good indicators of specific contamination sources. Furthermore, the RS-HP method based on the PCR amplification of the intergenic spacer region between the 16S and 23S rRNA genes can produce amplicon profiles allowing the discrimination of species at both serotype and intraserotype levels. This method represents a powerful tool that could be used for rapid typing of Salmonella isolates.
PMCID: PMC92021  PMID: 10742240
14.  Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation 
The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.
PMCID: PMC99706  PMID: 10473381
15.  Comparison of Blue Nucleic Acid Dyes for Flow Cytometric Enumeration of Bacteria in Aquatic Systems 
Seven blue nucleic acid dyes from Molecular Probes Inc. (SYTO-9, SYTO-11, SYTO-13, SYTO-16, SYTO-BC, SYBR-I and SYBR-II) were compared with the DAPI (4′,6-diamidino-2-phenylindole) method for flow cytometric enumeration of live and fixed bacteria in aquatic systems. It was shown that SYBR-II and SYTO-9 are the most appropriate dyes for bacterial enumeration in nonsaline waters and can be applied to both live and dead bacteria. The fluorescence signal/noise ratio was improved when SYTO-9 was used to stain living bacteria in nonsaline waters. Inversely, SYBR-II is more appropriate than SYTO dyes for bacterial enumeration of unfixed and fixed seawater samples.
PMCID: PMC106222  PMID: 9572943

Results 1-15 (15)