PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Upper Respiratory Tract Microbial Communities, Acute Otitis Media Pathogens, and Antibiotic Use in Healthy and Sick Children 
Applied and Environmental Microbiology  2012;78(17):6262-6270.
The composition of the upper respiratory tract microbial community may influence the risk for colonization by the acute otitis media (AOM) pathogens Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. We used culture-independent methods to describe upper respiratory tract microbial communities in healthy children and children with upper respiratory tract infection with and without concurrent AOM. Nasal swabs and data were collected in a cross-sectional study of 240 children between 6 months and 3 years of age. Swabs were cultured for S. pneumoniae, and real-time PCR was used to identify S. pneumoniae, H. influenzae, and M. catarrhalis. The V1-V2 16S rRNA gene regions were sequenced using 454 pyrosequencing. Microbial communities were described using a taxon-based approach. Colonization by S. pneumoniae, H. influenzae, and M. catarrhalis was associated with lower levels of diversity in upper respiratory tract flora. We identified commensal taxa that were negatively associated with colonization by each AOM bacterial pathogen and with AOM. The balance of these relationships differed according to the colonizing AOM pathogen and history of antibiotic use. Children with antibiotic use in the past 6 months and a greater abundance of taxa, including Lactococcus and Propionibacterium, were less likely to have AOM than healthy children (odds ratio [OR], 0.46; 95% confidence interval [CI], 0.25 to 0.85). Children with no antibiotic use in the past 6 months, a low abundance of Streptococcus and Haemophilus, and a high abundance of Corynebacterium and Dolosigranulum were less likely to have AOM (OR, 0.51; 95% CI, 0.31 to 0.83). An increased understanding of polymicrobial interactions will facilitate the development of effective AOM prevention strategies.
doi:10.1128/AEM.01051-12
PMCID: PMC3416608  PMID: 22752171
2.  Outbreak of Shiga Toxin-Producing Escherichia coli (STEC) O157:H7 Associated with Romaine Lettuce Consumption, 2011 
PLoS ONE  2013;8(2):e55300.
Background
Shiga toxin-producing Escherichia coli (STEC) O157:H7 is the causal agent for more than 96,000 cases of diarrheal illness and 3,200 infection-attributable hospitalizations annually in the United States.
Materials and Methods
We defined a confirmed case as a compatible illness in a person with the outbreak strain during 10/07/2011-11/30/2011. Investigation included hypothesis generation, a case-control study utilizing geographically-matched controls, and a case series investigation. Environmental inspections and tracebacks were conducted.
Results
We identified 58 cases in 10 states; 67% were hospitalized and 6.4% developed hemolytic uremic syndrome. Any romaine consumption was significantly associated with illness (matched Odds Ratio (mOR) = 10.0, 95% Confidence Interval (CI) = 2.1–97.0). Grocery Store Chain A salad bar was significantly associated with illness (mOR = 18.9, 95% CI = 4.5–176.8). Two separate traceback investigations for romaine lettuce converged on Farm A. Case series results indicate that cases (64.9%) were more likely than the FoodNet population (47%) to eat romaine lettuce (p-value = 0.013); 61.3% of cases reported consuming romaine lettuce from the Grocery Store Chain A salad bar.
Conclusions
This multistate outbreak of STEC O157:H7 infections was associated with consumption of romaine lettuce. Traceback analysis determined that a single common lot of romaine lettuce harvested from Farm A was used to supply Grocery Store Chain A and a university campus linked to a case with the outbreak strain. An investigation at Farm A did not identify the source of contamination. Improved ability to trace produce from the growing fields to the point of consumption will allow more timely prevention and control measures to be implemented.
doi:10.1371/journal.pone.0055300
PMCID: PMC3563629  PMID: 23390525
3.  Streptococcus pneumoniae Clonal Complex 199: Genetic Diversity and Tissue-Specific Virulence 
PLoS ONE  2011;6(4):e18649.
Streptococcus pneumoniae is an important cause of otitis media and invasive disease. Since introduction of the heptavalent pneumococcal conjugate vaccine, there has been an increase in replacement disease due to serotype 19A clonal complex (CC)199 isolates. The goals of this study were to 1) describe genetic diversity among nineteen CC199 isolates from carriage, middle ear, blood, and cerebrospinal fluid, 2) compare CC199 19A (n = 3) and 15B/C (n = 2) isolates in the chinchilla model for pneumococcal disease, and 3) identify accessory genes associated with tissue-specific disease among a larger collection of S. pneumoniae isolates. CC199 isolates were analyzed by comparative genome hybridization. One hundred and twenty-seven genes were variably present. The CC199 phylogeny split into two main clades, one comprised predominantly of carriage isolates and another of disease isolates. Ability to colonize and cause disease did not differ by serotype in the chinchilla model. However, isolates from the disease clade were associated with faster time to bacteremia compared to carriage clade isolates. One 19A isolate exhibited hypervirulence. Twelve tissue-specific genes/regions were identified by correspondence analysis. After screening a diverse collection of 326 isolates, spr0282 was associated with carriage. Four genes/regions, SP0163, SP0463, SPN05002 and RD8a were associated with middle ear isolates. SPN05002 also associated with blood and CSF, while RD8a associated with blood isolates. The hypervirulent isolate's genome was sequenced using the Solexa paired-end sequencing platform and compared to that of a reference serotype 19A isolate, revealing the presence of a novel 20 kb region with sequence similarity to bacteriophage genes. Genetic factors other than serotype may modulate virulence potential in CC199. These studies have implications for the long-term effectiveness of conjugate vaccines. Ideally, future vaccines would target common proteins to effectively reduce carriage and disease in the vaccinated population.
doi:10.1371/journal.pone.0018649
PMCID: PMC3077395  PMID: 21533186
4.  Capacity of serotype 19A and 15B/C Streptococcus pneumoniae isolates for experimental otitis media: implications for the conjugate vaccine 
Vaccine  2010;28(12):2450-2457.
Non-vaccine Streptococcus pneumoniae serotypes are increasingly associated with disease. We evaluated isolates of the same sequence type (ST199) but different serotype (15B/C, 19A) for growth in vitro, and pathogenic potential in a chinchilla otitis media model. We also developed a qPCR assay to quantitatively assess each isolate, circumventing the need for selectable markers. In vitro studies showed faster growth of serotype 19A over 15B/C. Both were equally capable of colonization and middle ear infection in this model. Serotype 19A is included in new conjugate vaccine formulations while serotype 15B/C is not. Non-capsular vaccine targets will be important in disease prevention efforts.
doi:10.1016/j.vaccine.2009.12.078
PMCID: PMC2851619  PMID: 20067753
Streptococcus pneumoniae; conjugate vaccine; qPCR assay
5.  Microbial Communities of the Upper Respiratory Tract and Otitis Media in Children 
mBio  2011;2(1):e00245-10.
Streptococcus pneumoniae asymptomatically colonizes the upper respiratory tract of children and is a frequent cause of otitis media. Patterns of microbial colonization likely influence S. pneumoniae colonization and otitis media susceptibility. This study compared microbial communities in children with and without otitis media. Nasal swabs and clinical and demographic data were collected in a cross-sectional study of Philadelphia, PA, children (6 to 78 months) (n = 108) during the 2008-2009 winter respiratory virus season. Swabs were cultured for S. pneumoniae. DNA was extracted from the swabs; 16S rRNA gene hypervariable regions (V1 and V2) were PCR amplified and sequenced by Roche/454 Life Sciences pyrosequencing. Microbial communities were described using the Shannon diversity and evenness indices. Principal component analysis (PCA) was used to group microbial community taxa into four factors representing correlated taxa. Of 108 children, 47 (44%) were colonized by S. pneumoniae, and 25 (23%) were diagnosed with otitis media. Microbial communities with S. pneumoniae were significantly less diverse and less even. Two PCA factors were associated with a decreased risk of pneumococcal colonization and otitis media, as follows: one factor included potentially protective flora (Corynebacterium and Dolosigranulum), and the other factor included Propionibacterium, Lactococcus, and Staphylococcus. The remaining two PCA factors were associated with an increased risk of otitis media. One factor included Haemophilus, and the final factor included Actinomyces, Rothia, Neisseria, and Veillonella. Generally, these taxa are not considered otitis media pathogens but may be important in the causal pathway. Increased understanding of upper respiratory tract microbial communities will contribute to the development of otitis media treatment and prevention strategies.
IMPORTANCE
Otitis media (middle ear infection) is the most common reason for pediatric sick visits in the United States. Streptococcus pneumoniae is a leading otitis media pathogen. S. pneumoniae must colonize the upper respiratory tract and compete with a complex community of nonpathogenic bacteria before infecting the middle ear. We compared microbial communities in the upper respiratory tract of children who had otitis media and those who did not. Members of the normal flora, i.e., Corynebacterium and Dolosigranulum, were protective for S. pneumoniae colonization and otitis media. As expected, the genera Haemophilus was associated with otitis media. Surprisingly, Actinomyces, Rothia, Neisseria, and Veillonella were associated with an increased risk of otitis media. These bacteria are not otitis media pathogens but may be associated with antibiotic use or involved in the causal pathway to disease. Increased understanding of upper respiratory tract microbial communities will lead to new ways to prevent middle ear infections, including probiotics.
doi:10.1128/mBio.00245-10
PMCID: PMC3031303  PMID: 21285435
6.  Characterization of the Digestive-Tract Microbiota of Hirudo orientalis, a European Medicinal Leech▿  
Applied and Environmental Microbiology  2008;74(19):6151-6154.
FDA-approved, postoperative use of leeches can lead to bacterial infections. In this study, we used culture-dependent and culture-independent approaches to characterize the digestive-tract microbiota of Hirudo orientalis. Surprisingly, two Aeromonas species, A. veronii and A. jandaei, were cultured. Uncultured Rikenella-like bacteria were most similar to isolates from Hirudo verbana.
doi:10.1128/AEM.00795-08
PMCID: PMC2565982  PMID: 18689513

Results 1-6 (6)