Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Steroid Resistance in COPD? Overlap and Differential Anti-Inflammatory Effects in Smokers and Ex-Smokers 
PLoS ONE  2014;9(2):e87443.
Inhaled corticosteroids (ICS) reduce exacerbation rates and improve health status but can increase the risk of pneumonia in COPD. The GLUCOLD study, investigating patients with mild-to-moderate COPD, has shown that long-term (2.5-year) ICS therapy induces anti-inflammatory effects. The literature suggests that cigarette smoking causes ICS insensitivity. The aim of this study is to compare anti-inflammatory effects of ICS in persistent smokers and persistent ex-smokers in a post-hoc analysis of the GLUCOLD study.
Persistent smokers (n = 41) and persistent ex-smokers (n = 31) from the GLUCOLD cohort were investigated. Effects of ICS treatment compared with placebo were estimated by analysing changes in lung function, hyperresponsiveness, and inflammatory cells in sputum and bronchial biopsies during short-term (0–6 months) and long-term (6–30 months) treatment using multiple regression analyses.
Bronchial mast cells were reduced by short-term and long-term ICS treatment in both smokers and ex-smokers. In contrast, CD3+, CD4+, and CD8+ cells were reduced by short-term ICS treatment in smokers only. In addition, sputum neutrophils and lymphocytes, and bronchial CD8+ cells were reduced after long-term treatment in ex-smokers only. No significant interactions existed between smoking and ICS treatment.
Even in the presence of smoking, long-term ICS treatment may lead to anti-inflammatory effects in the lung. Some anti-inflammatory ICS effects are comparable in smokers and ex-smokers with COPD, other effects are cell-specific. The clinical relevance of these findings, however, are uncertain.
PMCID: PMC3914834  PMID: 24505290
2.  Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD 
Respiratory Research  2011;12(1):34.
Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.
114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV1 63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163+ macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.
Ex-smokers with COPD had a higher percentage, but lower number of CD163+ macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×104/ml, p = 0.001 respectively). The percentage CD163+ M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163+ BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.
Our data suggest that smoking cessation partially changes the macrophage polarization in vivo in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.
PMCID: PMC3072953  PMID: 21426578
3.  A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology 
Thorax  2006;62(3):242-247.
Chronic obstructive pulmonary disease (COPD) is a respiratory disorder with increasing prevalence and mortality. It is associated with airway obstruction, increased airway hyper‐responsiveness (AHR), and ongoing airway and lung inflammation dominated by CD8 lymphocytes and neutrophils. Single‐nucleotide polymorphisms (SNPs) in a disintegrin and metalloprotease 33 (ADAM33) gene have been associated with AHR and COPD.
To assess whether SNPs in ADAM33 are associated with the severity of AHR and airway inflammation in COPD.
Eight SNPs in ADAM33 (F+1, Q‐1, S_1, S_2, ST+5, T_1, T_2, V_4) were genotyped in 111 patients with COPD (96 males, 69 current smokers, mean (standard deviation (SD)), aged 62 (8) years, median pack‐years 42 (IQR 31–55), mean postbronchodilator forced expiratory volume in 1 s (FEV1)% predicted 63 (9). Provocative concentration of methacholine causing a decrease in FEV1 of 20% (PC20 methacholine), sputum and bronchial biopsies were collected.
Patients with the ST+5 AA genotype had more severe AHR, higher numbers of sputum inflammatory cells and CD8 cells in bronchial biopsies than patients with the GG genotype (p = 0.03, 0.05 and 0.01, respectively). CD8 cell numbers were lower in patients carrying the minor allele of SNP T_1 and T_2, and homozygotic minor variants of SNP S_2 compared with the wild type (p = 0.02, 0.01 and 0.02, respectively).
This is the first study revealing that SNPs in a gene that confers susceptibility to COPD in the general population—that is, ADAM33—are associated with AHR and airway inflammation in COPD. These findings constitute an important step forward in linking gene polymorphisms with COPD pathophysiology, thereby possibly contributing to better treatments for this progressive and disabling disease in the future.
PMCID: PMC2117167  PMID: 17090574
4.  Smoking cessation and bronchial epithelial remodelling in COPD: a cross-sectional study 
Respiratory Research  2007;8(1):85.
Chronic Obstructive Pulmonary Disease (COPD) is associated with bronchial epithelial changes, including squamous cell metaplasia and goblet cell hyperplasia. These features are partially attributed to activation of the epidermal growth factor receptor (EGFR). Whereas smoking cessation reduces respiratory symptoms and lung function decline in COPD, inflammation persists. We determined epithelial proliferation and composition in bronchial biopsies from current and ex-smokers with COPD, and its relation to duration of smoking cessation.
114 COPD patients were studied cross-sectionally: 99 males/15 females, age 62 ± 8 years, median 42 pack-years, no corticosteroids, current (n = 72) or ex-smokers (n = 42, median cessation duration 3.5 years), postbronchodilator FEV1 63 ± 9% predicted. Squamous cell metaplasia (%), goblet cell (PAS/Alcian Blue+) area (%), proliferating (Ki-67+) cell numbers (/mm basement membrane), and EGFR expression (%) were measured in intact epithelium of bronchial biopsies.
Ex-smokers with COPD had significantly less epithelial squamous cell metaplasia, proliferating cell numbers, and a trend towards reduced goblet cell area than current smokers with COPD (p = 0.025, p = 0.001, p = 0.081, respectively), but no significant difference in EGFR expression. Epithelial features were not different between short-term quitters (<3.5 years) and current smokers. Long-term quitters (≥3.5 years) had less goblet cell area than both current smokers and short-term quitters (medians: 7.9% vs. 14.4%, p = 0.005; 7.9% vs. 13.5%, p = 0.008; respectively), and less proliferating cell numbers than current smokers (2.8% vs. 18.6%, p < 0.001).
Ex-smokers with COPD had less bronchial epithelial remodelling than current smokers, which was only observed after long-term smoking cessation (>3.5 years).
Trial registration
PMCID: PMC2214729  PMID: 18039368
5.  Airway inflammation contributes to health status in COPD: a cross-sectional study 
Respiratory Research  2006;7(1):140.
Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow limitation and airway inflammation, accompanied by decreased health status. It is still unknown which factors are responsible for the impaired health status in COPD. We postulated that airway inflammation negatively contributes to health status in COPD.
In 114 COPD patients (99 male, age: 62 ± 8 yr, 41 [31–55] pack-years, no inhaled or oral corticosteroids, postbronchodilator FEV1: 63 ± 9% pred, FEV1/IVC: 48 ± 9%) we obtained induced sputum and measured health status (St. George's respiratory questionnaire (SGRQ)), postbronchodilator FEV1, hyperinflation (RV/TLC), and airway hyperresponsiveness to methacholine (PC20). Sputum was induced by hypertonic saline and differential cell counts were obtained in 102 patients.
Univariate analysis showed that SGRQ total and symptom score were positively associated with % sputum macrophages (r = 0.20, p = 0.05; and r = 0.20, p = 0.04, respectively). Multiple regression analysis confirmed these relationships, providing significant contributions of % sputum macrophages (B = 0.25, p = 0.021) and RV/TLC (B = 0.60, p = 0.002) to SGRQ total score. Furthermore, SGRQ symptom score was associated with % sputum macrophages (B = 0.30, p = 0.03) and RV/TLC (B = 0.48, p = 0.044), whilst SGRQ activity score was associated with % sputum macrophages (B = 0.46, p = 0.002), RV/TLC (B = 0.61, p = 0.015), and PC20 (B = -9.3, p = 0.024). Current smoking and FEV1 were not significantly associated with health status in the multiple regression analysis.
We conclude that worse health status in COPD patients is associated with higher inflammatory cell counts in induced sputum. Our findings suggest that airway inflammation and hyperinflation independently contribute to impaired health status in COPD. This may provide a rationale for anti-inflammatory therapy in this disease.
PMCID: PMC1697818  PMID: 17137518

Results 1-5 (5)