PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (84)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  YEATS4 is a novel oncogene amplified in non-small cell lung cancer that regulates the p53 pathway 
Cancer research  2013;73(24):7301-7312.
Genetic analyses of lung cancer have helped found new treatments in this disease. We conducted an integrative analysis of gene expression and copy number in 261 non-small cell lung cancers (NSCLC) relative to matched normal tissues to define novel candidate oncogenes, identifying 12q13-15 and more specifically the YEATS4 gene as amplified and overexpressed in ~20% of the NSCLC cases examined. Overexpression of YEATS4 abrogated senescence in human bronchial epithelial cells (HBECs). Conversely, RNAi-mediated attenuation of YEATS4 in human lung cancer cells reduced their proliferation and tumor growth, impairing colony formation and inducing cellular senescence. These effects were associated with increased levels of p21WAF1 and p53 and cleavage of PARP, implicating YEATS4 as a negative regulator of the p21-p53 pathway. We also found that YEATS4 expression affected cellular responses to cisplastin, with increased levels associated with resistance and decreased levels with sensitivity. Taken together, our findings reveal YEATS4 as a candidate oncogene amplified in NSCLC, and a novel mechanism contributing to NSCLC pathogenesis.
doi:10.1158/0008-5472.CAN-13-1897
PMCID: PMC3959870  PMID: 24170126
YEATS4; NSCLC; oncogene; p53; integrative analysis
2.  CDKN2A/p16 inactivation mechanisms and their relationship to smoke exposure and molecular features in non-small cell lung cancer 
Introduction
CDKN2A(p16) inactivation is common in lung cancer and occurs via homozygous deletions (HD), methylation of promoter region, or point mutations. While p16 promoter methylation has been linked to KRAS mutation and smoking, the associations between p16 inactivation mechanisms and other common genetic mutations and smoking status are still controversial or unknown.
Methods
We determined all three p16 inactivation mechanisms using multiple methodologies for genomic status, methylation, RNA and protein expression, and correlated them with EGFR, KRAS, STK11 mutations and smoking status in 40 cell lines and 45 tumor samples of primary NSCLC. We also performed meta-analyses to investigate the impact of smoke exposure on p16 inactivation.
Results
p16 inactivation was the major mechanism of RB pathway perturbation in NSCLC, with HD being the most frequent method, followed by methylation and the rarer point mutations. Inactivating mechanisms were tightly correlated with loss of mRNA and protein expression. p16 inactivation occurred at comparable frequencies regardless of mutational status of EGFR, KRAS and STK11, however, the major inactivation mechanism of p16 varied. p16 methylation was linked to KRAS mutation but was mutually exclusive with EGFR mutation. Cell lines and tumor samples demonstrated similar results. Our meta-analyses confirmed a modest positive association between p16 promoter methylation and smoking.
Conclusions
Our results confirm that all of the inactivation mechanisms are truly associated with loss of gene product and identify specific associations between p16 inactivation mechanisms and other genetic changes and smoking status.
doi:10.1097/JTO.0b013e3182a46c0c
PMCID: PMC3951422  PMID: 24077454
p16; CDKN2A; inactivation; homozygous deletion; methylation; lung cancer; adenocarcinoma; meta-analysis
4.  Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology 
BMC Cancer  2014;14(1):778.
Background
Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status.
Methods
We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers.
Results
We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner.
Conclusions
We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-778) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2407-14-778
PMCID: PMC4216369  PMID: 25342220
Lung adenocarcinoma; miRNA; Current smoker; Former smoker; Never smoker; Reversible; Survival; Smoking specific
6.  Multiple Components of the VHL Tumor Suppressor Complex Are Frequently Affected by DNA Copy Number Loss in Pheochromocytoma 
Pheochromocytomas (PCC) are rare tumors that arise in chromaffin tissue of the adrenal gland. PCC are frequently inherited through predisposing mutations in genes such as the von Hippel-Lindau (VHL) tumor suppressor. VHL is part of the VHL elongin BC protein complex that also includes CUL2/5, TCEB1, TCEB2, and RBX1; in normoxic conditions this complex targets hypoxia-inducible factor 1 alpha (HIF1A) for degradation, thus preventing a hypoxic response. VHL inactivation by genetic mechanisms, such as mutation and loss of heterozygosity, inhibits HIF1A degradation, even in the presence of oxygen, and induces a pseudohypoxic response. However, the described <10% VHL mutation rate cannot account for the high frequency of hypoxic response observed. Indeed, little is known about genetic mechanisms disrupting other complex component genes. Here, we show that, in a panel of 171 PCC tumors, 59.6% harbored gene copy number loss (CNL) of at least one complex component. CNL significantly reduced gene expression and was associated with enrichment of gene targets controlled by HIF1. Interestingly, we show that VHL-related renal clear cell carcinoma harbored disruption of VHL alone. Our results indicate that VHL elongin BC protein complex components other than VHL could be important for PCC tumorigenesis and merit further investigation.
doi:10.1155/2014/546347
PMCID: PMC4178909  PMID: 25298778
7.  MicroRNAs As Biomarkers For Clinical Features Of Lung Cancer 
Metabolomics : open access  2012;2(3):1000108-.
Each year about 1.4 million people die from lung cancer worldwide. Despite efforts in prevention, diagnosis and treatment, survival rate remains poor for this disease. This unfortunate situation is largely due to the fact that a high proportion of cases are diagnosed at advanced stages, highlighting the great need for identifying new biomarkers in order to improve early diagnosis and treatment. Recent studies on microRNAs have not only shed light on their involvement in tumor development and progression, but also suggested their potential utility as biomarkers for subtype diagnostics, staging and prediction of treatment response. This review article summarizes the impact of microRNAs on lung cancer biology, and highlights their role in the detection and classification of lung cancer as well as direct targets for drug development.
doi:10.4172/2153-0769.1000108
PMCID: PMC4159950  PMID: 25221729
8.  EZH2 promotes E2F driven SCLC tumorigenesis through modulation of apoptosis and cell cycle regulation 
Introduction
While EZH2 has been associated with both non small cell and small cell lung cancers, current observations suggest different mechanisms of EZH2 activation and overexpression in these lung cancer types. Globally, small cell lung cancer (SCLC) kills 200,000 people yearly. New clinical approaches for SCLC treatment are required to improve the poor survival rate. Given the therapeutic potential of EZH2 as a target, we sought to delineate the downstream consequences of EZH2 disruption to identify the cellular mechanisms by which EZH2 promotes tumorigenesis in SCLC.
Methods
We generated cells with stable expression of shRNA targeting EZH2 and corresponding controls (pLKO.1) and determined the consequences of EZH2 knockdown on the cell cycle and apoptosis by means of propidium iodide staining and fluorescence activated cell sorting, western blot, qRT-PCR as well as cell viability assessment using MTT assays.
Results
We discovered that EZH2 inhibition 1) increased apoptotic activity by up-regulating the pro-apoptotic factors Puma and Bad, 2) decreased the fraction of cells in S or G2/M phases, and 3) elevated p21 protein levels, implicating EZH2 in cell death and cell cycle control in SCLC.
Conclusions
Our findings present evidence for the role of EZH2 in the regulation of cell cycle and apoptosis, providing a biological mechanism to explain the tumorigenicity of EZH2 in SCLC. Our work points to the great potential of EZH2 as a therapeutic target in SCLC.
doi:10.1097/JTO.0b013e318298762f
PMCID: PMC3713495  PMID: 23857401
SCLC; EZH2; oncogene; RB1; E2F
9.  Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste 
BioMed Research International  2014;2014:819474.
In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate.
doi:10.1155/2014/819474
PMCID: PMC4127261  PMID: 25136626
10.  Unique Pattern of Component Gene Disruption in the NRF2 Inhibitor KEAP1/CUL3/RBX1 E3-Ubiquitin Ligase Complex in Serous Ovarian Cancer 
BioMed Research International  2014;2014:159459.
The NFE2-related factor 2 (NRF2) pathway is critical to initiate responses to oxidative stress; however, constitutive activation occurs in different cancer types, including serous ovarian carcinomas (OVCA). The KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex is a regulator of NRF2 levels. Hence, we investigated the DNA-level mechanisms affecting these genes in OVCA. DNA copy-number loss (CNL), promoter hypermethylation, mRNA expression, and sequence mutation for KEAP1, CUL3, and RBX1 were assessed in a cohort of 568 OVCA from The Cancer Genome Atlas. Almost 90% of cases exhibited loss-of-function alterations in any components of the NRF2 inhibitory complex. CNL is the most prominent mechanism of component disruption, with RBX1 being the most frequently disrupted component. These alterations were associated with reduced mRNA expression of complex components, and NRF2 target gene expression was positively enriched in 90% of samples harboring altered complex components. Disruption occurs through a unique DNA-level alteration pattern in OVCA. We conclude that a remarkably high frequency of DNA and mRNA alterations affects components of the KEAP1/CUL3/RBX1 complex, through a unique pattern of genetic mechanisms. Together, these results suggest a key role for the KEAP1/CUL3/RBX1 complex and NRF2 pathway deregulation in OVCA.
doi:10.1155/2014/159459
PMCID: PMC4121105  PMID: 25114896
11.  SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types 
Oncoscience  2014;1(5):326-335.
SOX genes are transcription factors with important roles in embryonic development and carcinogenesis. The SOX family of 20 genes is responsible for regulating lineage and tissue specific gene expression patterns, controlling numerous developmental processes including cell differentiation, sex determination, and organogenesis. As is the case with many genes involved in regulating development, SOX genes are frequently deregulated in cancer. In this perspective we provide a brief overview of how SOX proteins can promote or suppress cancer growth. We also present a pan-cancer analysis of aberrant SOX gene expression and highlight potential molecular mechanisms responsible for their disruption in cancer. Our analyses indicate the prominence of SOX deregulation in different cancer types and reveal potential roles for SOX genes not previously described in cancer. Finally, we summarize our recent identification of SOX15 as a candidate tumor suppressor in pancreatic cancer and propose several research avenues to pursue to further delineate the emerging role of SOX15 in development and carcinogenesis.
PMCID: PMC4278306  PMID: 25594027
SOX; SOX15; oncogene; tumor suppressor; development; cancer
14.  The Hedgehog processing pathway is required for NSCLC growth and survival 
Oncogene  2012;32(18):10.1038/onc.2012.243.
Considerable interest has been generated from the results of recent clinical trials using SMOOTHENED (SMO) antagonists to inhibit the growth of HEDGEHOG (HH) signaling dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, SKINNY HEDGEHOG (SKN) or DISPATCHED-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently over-expressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand dependent cancers.
doi:10.1038/onc.2012.243
PMCID: PMC3821972  PMID: 22733134
DISPATCHED; Lung Cancer; Hedgehog; HEDGEHOG ACYLTRANSFERASE; SKINNY HEDGEHOG
15.  Comprehensive Analysis of HPV16 Integration in OSCC Reveals No Significant Impact of Physical Status on Viral Oncogene and Virally Disrupted Human Gene Expression 
PLoS ONE  2014;9(2):e88718.
Infection with high-risk human papillomavirus (HPV) type 16 is an independent risk factor for the development of oropharyngeal squamous cell carcinomas (OSCC). However, it is unclear whether viral integration is an essential hallmark in the carcinogenic process of OSCC and whether HPV integration correlates with the level of viral gene transcription and influences the expression of disrupted host genes. We analyzed 75 patients with OSCC. HPV16-positivity was proven by p16INK4A immunohistochemistry, PCR and FISH. Viral integration was examined using DIPS- as well as APOT-PCR. Viral E2, E6 and E7 gene expression levels were quantified by quantitative reverse transcriptase (RT-q)PCR. Expression levels of 7 human genes disrupted by the virus were extracted from mRNA expression profiling data of 32 OSCCs. Viral copy numbers were assessed by qPCR in 73 tumors. We identified 37 HPV16-human fusion products indicating viral integration in 29 (39%) OSCC. In the remaining tumors (61%) only episome-derived PCR products were detected. When comparing OSCC with or without an integration-derived fusion product, we did not find significant differences in the mean RNA expression of viral genes E2, E6 and E7 or the viral copy numbers per cell, nor did the RNA expression of the HPV-disrupted genes differ from either group of OSCC. In conclusion, our data do not support the hypothesis that integration affects the levels of viral and/or HPV-disrupted human gene transcripts. Thus constitutive, rather than a high level, of expression of oncogene transcripts appears to be required in HPV-related OSCC.
doi:10.1371/journal.pone.0088718
PMCID: PMC3933331  PMID: 24586376
16.  Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer 
Oncotarget  2014;5(3):764-774.
Metastatic prostate cancer (PCa) is still an incurable disease. Long non-coding RNAs (lncRNAs) may be an overlooked source of cancer biomarkers and therapeutic targets. We therefore performed RNA sequencing on paired metastatic/non-metastatic PCa xenografts derived from clinical specimens. The most highly up-regulated transcript was LOC728606, a lncRNA now designated PCAT18. PCAT18 is specifically expressed in the prostate compared to 11 other normal tissues (p<0.05) and up-regulated in PCa compared to 15 other neoplasms (p<0.001). Cancer-specific up-regulation of PCAT18 was confirmed on an independent dataset of PCa and benign prostatic hyperplasia samples (p<0.001). PCAT18 was detectable in plasma samples and increased incrementally from healthy individuals to those with localized and metastatic PCa (p<0.01). We identified a PCAT18-associated expression signature (PES), which is highly PCa-specific and activated in metastatic vs. primary PCa samples (p<1E−4, odds ratio>2). The PES was significantly associated with androgen receptor (AR) signalling. Accordingly, AR activation dramatically up-regulated PCAT18 expression in vitro and in vivo. PCAT18 silencing significantly (p<0.001) inhibited PCa cell proliferation and triggered caspase 3/7 activation, with no effect on non-neoplastic cells. PCAT18 silencing also inhibited PCa cell migration (p<0.01) and invasion (p<0.01). These results position PCAT18 as a potential therapeutic target and biomarker for metastatic PCa.
PMCID: PMC3996663  PMID: 24519926
long non-coding RNA; prostate cancer; metastasis; androgen receptor; cancer biomarkers
17.  Frequent concerted genetic mechanisms disrupt multiple components of the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in thyroid cancer 
Molecular Cancer  2013;12:124.
Background
Reactive oxygen species contribute to normal thyroid function. The NRF2 oxidative response pathway is frequently and constitutively activated in multiple tumor types, including papillary thyroid carcinoma (PTC). Genetic mechanisms underlying NRF2 pathway activation in PTC are not fully understood. Thus, we aimed to determine whether inactivating patterns of DNA-level alterations affect genes encoding for individual NRF2 inhibitor complex components (CUL3/KEAP1/RBX1) occur in PTC.
Findings
Combined patterns of epi/genetic alterations for KEAP1/CUL3/RBX1 E3 ubiquitin-ligase complex components were simultaneously interrogated for a panel of 310 PTC cases and 40 adjacent non-malignant tissues. Data were obtained from The Cancer Genome Atlas project. Enrichment of NRF2 pathway activation was assessed by gene-set enrichment analysis using transcriptome data. Our analyses revealed that PTC sustain a strikingly high frequency (80.6%) of disruption to multiple component genes of the NRF2 inhibitor complex. Hypermethylation is the predominant inactivating mechanism primarily affecting KEAP1 (70.6%) and CUL3 (20%), while copy number loss mostly affects RBX1 (16.8%). Concordantly, NRF2-associated gene expression signatures are positively and significantly enriched in PTC.
Conclusions
The KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex is almost ubiquitously affected by multiple DNA-level mechanisms and downstream NRF2 pathway targets are activated in PTC. Given the importance of this pathway to normal thyroid function as well as to cancer; targeted inhibition of NRF2 regulators may impact strategies for therapeutic intervention involving this pathway.
doi:10.1186/1476-4598-12-124
PMCID: PMC4016213  PMID: 24138990
KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex; Gene disruption; NRF2; Thyroid cancer
18.  Production of Fungal Glucoamylase for Glucose Production from Food Waste 
Biomolecules  2013;3(3):651-661.
The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes.
doi:10.3390/biom3030651
PMCID: PMC4030950  PMID: 24970186
glucoamylase production; Aspergillus awamori; food waste hydrolysis; glucose production
19.  Genomic Deregulation of the E2F/Rb Pathway Leads to Activation of the Oncogene EZH2 in Small Cell Lung Cancer 
PLoS ONE  2013;8(8):e71670.
Small cell lung cancer (SCLC) is a highly aggressive lung neoplasm with extremely poor clinical outcomes and no approved targeted treatments. To elucidate the mechanisms responsible for driving the SCLC phenotype in hopes of revealing novel therapeutic targets, we studied copy number and methylation profiles of SCLC. We found disruption of the E2F/Rb pathway was a prominent feature deregulated in 96% of the SCLC samples investigated and was strongly associated with increased expression of EZH2, an oncogene and core member of the polycomb repressive complex 2 (PRC2). Through its catalytic role in the PRC2 complex, EZH2 normally functions to epigenetically silence genes during development, however, it aberrantly silences genes in human cancers. We provide evidence to support that EZH2 is functionally active in SCLC tumours, exerts pro-tumourigenic functions in vitro, and is associated with aberrant methylation profiles of PRC2 target genes indicative of a “stem-cell like” hypermethylator profile in SCLC tumours. Furthermore, lentiviral-mediated knockdown of EZH2 demonstrated a significant reduction in the growth of SCLC cell lines, suggesting EZH2 has a key role in driving SCLC biology. In conclusion, our data confirm the role of EZH2 as a critical oncogene in SCLC, and lend support to the prioritization of EZH2 as a potential therapeutic target in clinical disease.
doi:10.1371/journal.pone.0071670
PMCID: PMC3744458  PMID: 23967231
20.  Progenitor Cell Line (hPheo1) Derived from a Human Pheochromocytoma Tumor 
PLoS ONE  2013;8(6):e65624.
Background
Pheochromocytomas are rare tumors generally arising in the medullary region of the adrenal gland. These tumors release excessive epinephrine and norepinephrine resulting in hypertension and cardiovascular crises for which surgery is the only definitive treatment. Molecular mechanisms that control tumor development and hormone production are poorly understood, and progress has been hampered by the lack of human cellular model systems. To study pheochromocytomas, we developed a stable progenitor pheochromocytoma cell line derived from a primary human tumor.
Methods
After IRB approval and written informed consent, human pheochromocytoma tissue was excised, minced, dispersed enzymatically, and cultured in vitro. Primary pheochromocytoma cells were infected with a lentivirus vector carrying the catalytic subunit of human telomerase reverse transcriptase (hTERT). The hTERT immortalized cells (hPheo1) have been passaged >300 population doublings. The resulting cell line was characterized morphologically, biochemically and for expression of neuroendocrine properties. The expression of marker enzymes and proteins was assessed by immunofluorescence staining and immunoblotting. Telomerase activity was determined by using the telomeric repeat amplification protocol (TRAP) assay.
Results
We have established a human pheochromocytoma precursor cell line that expresses the neuroendocrine marker, chromogranin A, when differentiated in the presence of bone morphogenic protein 4 (BMP4), nerve growth factor (NGF), and dexamethasone. Phenylethanolamine N-methyltransferase (PNMT) expression is also detected with this differentiation regimen. CD-56 (also known as NCAM, neural cell adhesion molecule) is expressed in these cells, but CD31 (also known as PECAM-1, a marker of endothelial cells) is negative.
Conclusions
We have maintained hTERT-immortalized progenitor cells derived from a pheochromocytoma (hPheo1) in culture for over 300 population doublings. This progenitor human cell line is normal diploid except for a deletion in the p16 region and has inducible neuroendocrine biomarkers. These cells should be a valuable reagent for studying mechanisms of tumor development and for testing novel therapeutic approaches.
doi:10.1371/journal.pone.0065624
PMCID: PMC3681983  PMID: 23785438
21.  Mitochondrial DNA Mutations in Respiratory Complex-I in Never-Smoker Lung Cancer Patients Contribute to Lung Cancer Progression and associated with EGFR gene mutation 
Journal of cellular physiology  2012;227(6):2451-2460.
Mitochondrial DNA (mtDNA) mutations were reported in different cancers. However, the nature and role of mtDNA mutation in never-smoker lung cancer patients including patients with EGFR and KRAS gene mutation are unknown. In the present study, we sequenced entire mitochondrial genome (16.5 kb) in matched normal and tumors obtained from 30 never-smoker and 30 current-smoker lung cancer patients, and determined the mtDNA content. All the patients’ samples were sequenced for KRAS (exon 2) and EGFR (exon 19 and 21) gene mutation. The impact of forced overexpression of a respiratory complex-I gene mutation was evaluated in a lung cancer cell line. We observed significantly higher (P=0.006) mtDNA mutation in the never-smokers compared to the current-smoker lung cancer patients. MtDNA mutation was significantly higher (P=0.026) in the never-smoker Asian compared to the current-smoker Caucasian patients’ population. MtDNA mutation was significantly (P=0.007) associated with EGFR gene mutation in the never-smoker patients. We also observed a significant increase (P=0.037) in mtDNA content among the never-smoker lung cancer patients. The majority of the coding mtDNA mutations targeted respiratory complex-I and forced overexpression of one of these mutations resulted in increased in vitro proliferation, invasion and superoxide production in lung cancer cells. We observed a higher prevalence and new relationship between mtDNA alterations among never-smoker lung cancer patients and EGFR gene mutation. Moreover, a representative mutation produced strong growth effects after forced overexpression in lung cancer cells. Signature mtDNA mutations provide a basis to develop novel biomarkers and therapeutic strategies for never-smoker lung cancer patients.
doi:10.1002/jcp.22980
PMCID: PMC3256258  PMID: 21830212
Lung cancer; never-smokers; MtDNA mutation; Respiratory Complex-I; EGFR mutation
22.  The detection and implication of genome instability in cancer 
Cancer Metastasis Reviews  2013;32(3-4):341-352.
Genomic instability is a hallmark of cancer that leads to an increase in genetic alterations, thus enabling the acquisition of additional capabilities required for tumorigenesis and progression. Substantial heterogeneity in the amount and type of instability (nucleotide, microsatellite, or chromosomal) exists both within and between cancer types, with epithelial tumors typically displaying a greater degree of instability than hematological cancers. While high-throughput sequencing studies offer a comprehensive record of the genetic alterations within a tumor, detecting the rate of instability or cell-to-cell viability using this and most other available methods remains a challenge. Here, we discuss the different levels of genomic instability occurring in human cancers and touch on the current methods and limitations of detecting instability. We have applied one such approach to the surveying of public tumor data to provide a cursory view of genome instability across numerous tumor types.
doi:10.1007/s10555-013-9429-5
PMCID: PMC3843371  PMID: 23633034
Genomic instability; Cancer; CIN; MSI; Nucleotide instability
24.  Integrative Genomics Identified RFC3 as an Amplified Candidate Oncogene in Esophageal Adenocarcinoma 
Purpose
Esophageal adenocarcinoma (EAC) is a lethal malignancy that can develop from the premalignant condition, Barrett’s esophagus (BE). Currently, there are no validated simple methods to predict which patients will progress to EAC. A better understanding of the genetic mechanisms driving EAC tumorigenesis is needed to identify new therapeutic targets and develop biomarkers capable of identifying high-risk patients that would benefit from aggressive neoadjuvant therapy. We employed an integrative genomics approach to identify novel genes involved in EAC biology that may serve as useful clinical markers.
Experimental Design
Whole genome tiling-path array CGH was used to identify significant regions of copy number (CN) alteration in 20 EACs and 10 matching BE tissues. CN and gene expression data were integrated to identify candidate oncogenes within regions of amplification and multiple additional sample cohorts were assessed to validate candidate genes.
Results
We identified RFC3 as a novel, candidate oncogene activated by amplification in ~25% of EAC samples. RFC3 was also amplified in BE from a patient whose EAC harbored amplification, and was differentially expressed between non-malignant and EAC tissues. CN gains were detected in other cancer types and RFC3 knockdown inhibited proliferation and anchorage-independent growth of cancer cells with increased CN, but had little effect on those without. Moreover, high RFC3 expression was associated with poor patient outcome in multiple cancer types.
Conclusions
RFC3 is a candidate oncogene amplified in EAC. RFC3 DNA amplification is also prevalent in other epithelial cancer types and RFC3 expression could serve as a prognostic marker.
doi:10.1158/1078-0432.CCR-11-1431
PMCID: PMC3523177  PMID: 22328562
RFC3; esophageal adenocarcinoma; Barrett’s esophagus; DNA amplification
25.  Molecular features in arsenic-induced lung tumors 
Molecular Cancer  2013;12:20.
Arsenic is a well-known human carcinogen, which potentially affects ~160 million people worldwide via exposure to unsafe levels in drinking water. Lungs are one of the main target organs for arsenic-related carcinogenesis. These tumors exhibit particular features, such as squamous cell-type specificity and high incidence among never smokers. Arsenic-induced malignant transformation is mainly related to the biotransformation process intended for the metabolic clearing of the carcinogen, which results in specific genetic and epigenetic alterations that ultimately affect key pathways in lung carcinogenesis. Based on this, lung tumors induced by arsenic exposure could be considered an additional subtype of lung cancer, especially in the case of never-smokers, where arsenic is a known etiological agent. In this article, we review the current knowledge on the various mechanisms of arsenic carcinogenicity and the specific roles of this metalloid in signaling pathways leading to lung cancer.
doi:10.1186/1476-4598-12-20
PMCID: PMC3626870  PMID: 23510327
Arsenic; Arsenite; Lung cancer; Epigenetic; Reactive oxygen species; Epidermal growth factor receptor; Phosphatidylinositol 3-kinases; NFE2-related factor 2

Results 1-25 (84)