PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  iPPI-DB: an online database of modulators of protein–protein interactions 
Nucleic Acids Research  2015;44(Database issue):D542-D547.
In order to boost the identification of low-molecular-weight drugs on protein–protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein–protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL.
doi:10.1093/nar/gkv982
PMCID: PMC4702945  PMID: 26432833
2.  FAF-Drugs3: a web server for compound property calculation and chemical library design 
Nucleic Acids Research  2015;43(Web Server issue):W200-W207.
Drug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used for drug discovery and chemical biology projects to help in preparing compound libraries and to assist decision-making during the hit selection/lead optimization phase. Since it was first described in 2006, FAF-Drugs has been significantly modified. The tool now applies an enhanced structure curation procedure, can filter or analyze molecules with user-defined or eight predefined physicochemical filters as well as with several simple ADMET (absorption, distribution, metabolism, excretion and toxicity) rules. In addition, compounds can be filtered using an updated list of 154 hand-curated structural alerts while Pan Assay Interference compounds (PAINS) and other, generally unwanted groups are also investigated. FAF-Drugs3 offers access to user-friendly html result pages and the possibility to download all computed data. The server requires as input an SDF file of the compounds; it is open to all users and can be accessed without registration at http://fafdrugs3.mti.univ-paris-diderot.fr.
doi:10.1093/nar/gkv353
PMCID: PMC4489254  PMID: 25883137
3.  MTiOpenScreen: a web server for structure-based virtual screening 
Nucleic Acids Research  2015;43(Web Server issue):W448-W454.
Open screening endeavors play and will play a key role to facilitate the identification of new bioactive compounds in order to foster innovation and to improve the effectiveness of chemical biology and drug discovery processes. In this line, we developed the new web server MTiOpenScreen dedicated to small molecule docking and virtual screening. It includes two services, MTiAutoDock and MTiOpenScreen, allowing performing docking into a user-defined binding site or blind docking using AutoDock 4.2 and automated virtual screening with AutoDock Vina. MTiOpenScreen provides valuable starting collections for screening, two in-house prepared drug-like chemical libraries containing 150 000 PubChem compounds: the Diverse-lib containing diverse molecules and the iPPI-lib enriched in molecules likely to inhibit protein–protein interactions. In addition, MTiOpenScreen offers users the possibility to screen up to 5000 small molecules selected outside our two libraries. The predicted binding poses and energies of up to 1000 top ranked ligands can be downloaded. In this way, MTiOpenScreen enables researchers to apply virtual screening using different chemical libraries on traditional or more challenging protein targets such as protein–protein interactions. The MTiOpenScreen web server is free and open to all users at http://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/.
doi:10.1093/nar/gkv306
PMCID: PMC4489289  PMID: 25855812
4.  Rational Design of Small-Molecule Stabilizers of Spermine Synthase Dimer by Virtual Screening and Free Energy-Based Approach 
PLoS ONE  2014;9(10):e110884.
Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.
doi:10.1371/journal.pone.0110884
PMCID: PMC4207787  PMID: 25340632
5.  Drug-Like Protein–Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology 
Molecular Informatics  2014;33(6-7):414-437.
Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein–protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein–protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators.
doi:10.1002/minf.201400040
PMCID: PMC4160817  PMID: 25254076
Protein–protein interaction modulators; Drug discovery; Drug-like molecules; In silico methods; PPI network
6.  A leap into the chemical space of protein-protein interaction inhibitors 
Current Pharmaceutical Design  2012;18(30):4648-4667.
Protein-protein interactions (PPI) are involved in vital cellular processes and are therefore associated to a growing number of diseases. But working with them as therapeutic targets comes with some major hurdles that require substantial mutations from our way to design to drugs on historical targets such as enzymes and G-Protein Coupled Receptor (GPCR). Among the numerous ways we could improve our methodologies to maximize the potential of developing new chemical entities on PPI targets, is the fundamental question of what type of compounds should we use to identify the first hits and among which chemical space should we navigate to optimize them to the drug candidate stage. In this review article, we cover different aspects on PPI but with the aim to gain some insights into the specific nature of the chemical space of PPI inhibitors. We describe the work of different groups to highlight such properties and discuss their respective approach. We finally discuss a case study in which we describe the properties of a set of 115 PPI inhibitors that we compare to a reference set of 1730 enzyme inhibitors. This case study highlights interesting properties such as the unfortunate price that still needs to be paid by PPI inhibitors in terms of molecular weight, hydrophobicity, and aromaticity in order to reach a critical level of activity. But it also shows that not all PPI targets are equivalent, and that some PPI targets can demonstrate a better druggability by illustrating the better drug likeness of their associated inhibitors.
PMCID: PMC3901718  PMID: 22650260
Binding Sites; Computer Simulation; Drug Discovery; methods; Enzyme Inhibitors; chemistry; pharmacology; Principal Component Analysis; Protein Binding; Protein Interaction Maps; Proteins; chemistry; Small Molecule Libraries; chemistry; pharmacology; Chemical space; protein-protein interactions; compound collection; ADME; chemoinformatics; therapeutic targets; mutations; enzymes; G-Protein Coupled Receptor (GPCR); druggability
7.  In Silico Mechanistic Profiling to Probe Small Molecule Binding to Sulfotransferases 
PLoS ONE  2013;8(9):e73587.
Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug–drug interactions. We focus on sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility. Here we report a novel in silico structure-based approach to probe ligand binding to SULTs. We explored the flexibility of SULTs by molecular dynamics (MD) simulations in order to identify the most suitable multiple receptor conformations for ligand binding prediction. Then, we employed structure-based docking-scoring approach to predict ligand binding and finally we combined the predicted interaction energies by using a QSAR methodology. The results showed that our protocol successfully prioritizes potent binders for the studied here SULT1 isoforms, and give new insights on specific molecular mechanisms for diverse ligands’ binding related to their binding sites plasticity. Our best QSAR models, introducing predicted protein-ligand interaction energy by using docking, showed accuracy of 67.28%, 78.00% and 75.46%, for the isoforms SULT1A1, SULT1A3 and SULT1E1, respectively. To the best of our knowledge our protocol is the first in silico structure-based approach consisting of a protein-ligand interaction analysis at atomic level that considers both ligand and enzyme flexibility, along with a QSAR approach, to identify small molecules that can interact with II phase dug metabolizing enzymes.
doi:10.1371/journal.pone.0073587
PMCID: PMC3765257  PMID: 24039991
8.  Tyrosine Kinase Syk Non-Enzymatic Inhibitors and Potential Anti-Allergic Drug-Like Compounds Discovered by Virtual and In Vitro Screening 
PLoS ONE  2011;6(6):e21117.
In the past decade, the spleen tyrosine kinase (Syk) has shown a high potential for the discovery of new treatments for inflammatory and autoimmune disorders. Pharmacological inhibitors of Syk catalytic site bearing therapeutic potential have been developed, with however limited specificity towards Syk. To address this topic, we opted for the design of drug-like compounds that could impede the interaction of Syk with its cellular partners while maintaining an active kinase protein. To achieve this challenging task, we used the powerful potential of intracellular antibodies for the modulation of cellular functions in vivo, combined to structure-based in silico screening. In our previous studies, we reported the anti-allergic properties of the intracellular antibody G4G11. With the aim of finding functional mimics of G4G11, we developed an Antibody Displacement Assay and we isolated the drug-like compound C-13, with promising in vivo anti-allergic activity. The likely binding cavity of this compound is located at the close vicinity of G4G11 epitope, far away from the catalytic site of Syk. Here we report the virtual screen of a collection of 500,000 molecules against this new cavity, which led to the isolation of 1000 compounds subsequently evaluated for their in vitro inhibitory effects using the Antibody Displacement Assay. Eighty five compounds were selected and evaluated for their ability to inhibit the liberation of allergic mediators from mast cells. Among them, 10 compounds inhibited degranulation with IC50 values ≤10 µM. The most bioactive compounds combine biological activity, significant inhibition of antibody binding and strong affinity for Syk. Moreover, these molecules show a good potential for oral bioavailability and are not kinase catalytic site inhibitors. These bioactive compounds could be used as starting points for the development of new classes of non-enzymatic inhibitors of Syk and for drug discovery endeavour in the field of inflammation related disorders.
doi:10.1371/journal.pone.0021117
PMCID: PMC3118801  PMID: 21701581
9.  DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening 
Background
Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats.
Results
Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine.
Conclusion
DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.
doi:10.1186/1472-6769-9-6
PMCID: PMC2781789  PMID: 19912625
10.  AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening 
BMC Bioinformatics  2008;9:438.
Background
Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization.
Results
The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection.
Conclusion
The open source AMMOS program can be helpful in a broad range of in silico drug design studies such as optimization of small molecules or energy minimization of pre-docked protein-ligand complexes. Our enrichment study suggests that AMMOS, designed to minimize a large number of ligands pre-docked in a protein target, can successfully be applied in a final post-processing step and that it can take into account some receptor flexibility within the binding site area.
doi:10.1186/1471-2105-9-438
PMCID: PMC2588602  PMID: 18925937
11.  FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects 
BMC Bioinformatics  2008;9:396.
Background
Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making.
Results
This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python) based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries.
Conclusion
We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after) experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules) that can be easily tuned.
doi:10.1186/1471-2105-9-396
PMCID: PMC2561050  PMID: 18816385
12.  MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening 
BMC Bioinformatics  2008;9:184.
Background
The number of protein targets with a known or predicted tri-dimensional structure and of drug-like chemical compounds is growing rapidly and so is the need for new therapeutic compounds or chemical probes. Performing flexible structure-based virtual screening computations on thousands of targets with millions of molecules is intractable to most laboratories nor indeed desirable. Since shape complementarity is of primary importance for most protein-ligand interactions, we have developed a tool/protocol based on rigid-body docking to select compounds that fit well into binding sites.
Results
Here we present an efficient multiple conformation rigid-body docking approach, MS-DOCK, which is based on the program DOCK. This approach can be used as the first step of a multi-stage docking/scoring protocol. First, we developed and validated the Multiconf-DOCK tool that generates several conformers per input ligand. Then, each generated conformer (bioactives and 37970 decoys) was docked rigidly using DOCK6 with our optimized protocol into seven different receptor-binding sites. MS-DOCK was able to significantly reduce the size of the initial input library for all seven targets, thereby facilitating subsequent more CPU demanding flexible docking procedures.
Conclusion
MS-DOCK can be easily used for the generation of multi-conformer libraries and for shape-based filtering within a multi-step structure-based screening protocol in order to shorten computation times.
doi:10.1186/1471-2105-9-184
PMCID: PMC2373571  PMID: 18402678
13.  Identification and functional characterization of a new member of the human Mcm protein family: hMcm8 
Nucleic Acids Research  2003;31(2):570-579.
The six minichromosome maintenance proteins (Mcm2–7) are required for both the initiation and elongation of chromosomal DNA, ensuring that DNA replication takes place once, and only once, during the S phase. Here we report on the cloning of a new human Mcm gene (hMcm8) and on characterisation of its protein product. The hMcm8 gene contains the central Mcm domain conserved in the Mcm2–7 gene family, and is expressed in a range of cell lines and human tissues. hMcm8 mRNA accumulates during G1/S phase, while hMcm8 protein is detectable throughout the cell cycle. Immunoprecipitation-based studies did not reveal any participation of hMcm8 in the Mcm3/5 and Mcm2/4/6/7 subcomplexes. hMcm8 localises to the nucleus, although it is devoid of a nuclear localisation signal, suggesting that it binds to a nuclear protein. In the nucleus, the hMcm8 structure-bound fraction is detectable in S, but not in G2/M, phase, as for hMcm3. However, unlike hMcm3, the hMcm8 structure-bound fraction is not detectable in G1 phase. Overall, our data identify a new Mcm protein, which does not form part of the Mcm2–7 complex and which is only structure-bound during S phase, thus suggesting its specific role in DNA replication.
PMCID: PMC140502  PMID: 12527764
14.  Serca1 Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis 
The Journal of Cell Biology  2001;153(6):1301-1314.
By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca2+ accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis.
PMCID: PMC2192035  PMID: 11402072
SERCA1; endoplasmic reticulum; calcium; apoptosis; splice variants

Results 1-14 (14)