Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mis-specified cells die by an active gene-directed process, and inhibition of this death results in cell fate transformation in Drosophila 
Development (Cambridge, England)  2005;132(24):5343-5352.
Incorrectly specified or mis-specified cells often undergo cell death or are transformed to adopt a different cell fate during development. The underlying cause for this distinction is largely unknown. In many developmental mutants in Drosophila, large numbers of mis-specified cells die synchronously, providing a convenient model for analysis of this phenomenon. The maternal mutant bicoid is particularly useful model with which to address this issue because its mutant phenotype is a combination of both transformation of tissue (acron to telson) and cell death in the presumptive head and thorax regions. We show that a subset of these mis-specified cells die through an active gene-directed process involving transcriptional upregulation of the cell death inducer hid. Upregulation of hid also occurs in oskar mutants and other segmentation mutants. In hid bicoid double mutants, mis-specified cells in the presumptive head and thorax survive and continue to develop, but they are transformed to adopt a different cell fate. We provide evidence that the terminal torso signaling pathway protects the mis-specified telson tissue in bicoid mutants from hid-induced cell death, whereas mis-specified cells in the head and thorax die, presumably because equivalent survival signals are lacking. These data support a model whereby mis-specification can be tolerated if a survival pathway is provided, resulting in cellular transformation.
PMCID: PMC2760325  PMID: 16280349
Mis-specification; Cell death; Transformation; Bicoid; Oskar; Hid; Drosophila
2.  Antibody-Labeled Liposomes for CT Imaging of Atherosclerotic Plaques 
Texas Heart Institute Journal  2009;36(5):393-403.
We evaluated the specific binding of anti-intercellular adhesion molecule 1 (ICAM-1) conjugated liposomes (immunoliposomes, or ILs) to activated human coronary artery endothelial cells (HCAEC) with the purpose of designing a computed tomographic imaging agent for early detection of atherosclerotic plaques. Covalent attachment of anti-ICAM-1 monoclonal antibodies to pre-formed liposomes stabilized with polyethylene glycol yielded ILs, with a coupling efficiency of the ICAM-1 to the liposomes of 10% to 24%. The anti-ICAM-1–labeled ILs had an average diameter of 136 nm as determined by dynamic light-scattering and cryogenic electron microscopy. The ILs' encapsulation of 5-[N-acetyl-(2,3-dihydroxypropyl)-amino)-N, N′-bis(2,3-dihydroxypropyl)-2,4,6-triiodo-benzene-1,3-dicarboxamide (iohexol) was determined to be 18% to 19% by a dialysis technique coupled with ultraviolet detection of free iohexol. This encapsulation corresponded to 30 to 38 mg iodine per mL IL solution, and the ILs exhibited 91% to 98.5% iohexol retention at room temperature and under physiologic conditions. The specific binding of the ILs to cultured, activated HCAEC was measured using flow cytometry, enzyme-linked immunosorbent assays, and fluorescence microscopy. The immunosorbent assays demonstrated the specificity of binding of anti-ICAM-1 to ICAM-1 compared with control studies using nonspecific immunoglobulin G-labeled ILs. Flow cytometry and fluorescence microscopy experiments demonstrated the expression of ICAM-1 on the surface of activated HCAEC. Therefore, our iohexol-filled ILs demonstrated potential for implementation in computed tomographic angiography to noninvasively detect atherosclerotic plaques that are prone to rupture.
PMCID: PMC2763481  PMID: 19876414
Atherosclerosis; binding sites, antibody; cell adhesion molecules; contrast media; endothelium, vascular; ICAM-1; immunoliposome; iohexol/diagnostic use; tomography, X-ray computed; vulnerable plaque
3.  The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila 
Development (Cambridge, England)  2005;132(9):2125-2134.
The initiator caspase Dronc is the only Drosophila caspase that contains a caspase activation and recruitment domain (CARD). Although Dronc has been implicated as an important effector of apoptosis, the genetic function of dronc in normal development is unclear because dronc mutants have not been available. In an EMS mutagenesis screen, we isolated four point mutations in dronc that recessively suppress the eye ablation phenotype caused by eye-specific overexpression of hid. Homozygous mutant dronc animals die during pupal stages; however, at a low frequency we obtained homozygous adult escapers. These escapers have additional cells in the eye and wings that are less transparent and slightly curved down. We determined that this is due to lack of apoptosis. Our analyses of dronc mutant embryos suggest that dronc is essential for most apoptotic cell death during Drosophila development, but they also imply the existence of a dronc-independent cell death pathway. We also constructed double mutant flies for dronc and the apoptosis inhibitor diap1. dronc mutants can rescue the ovarian degeneration phenotype caused by diap1 mutations, confirming that dronc acts genetically downstream of diap1.
PMCID: PMC2519871  PMID: 15800001
Dronc (Nc); CARD; Caspase; Apoptosis; Cell death; Drosophila; Diap1
4.  vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis 
Development (Cambridge, England)  2006;133(10):1871-1880.
Appropriate cell-cell signaling is crucial for proper tissue homeostasis. Protein sorting of cell surface receptors at the early endosome is important for both the delivery of the signal and the inactivation of the receptor, and its alteration can cause malignancies including cancer. In a genetic screen for suppressors of the pro-apoptotic gene hid in Drosophila, we identified two alleles of vps25, a component of the ESCRT machinery required for protein sorting at the early endosome. Paradoxically, although vps25 mosaics were identified as suppressors of hid-induced apoptosis, vps25 mutant cells die. However, we provide evidence that a non-autonomous increase of Diap1 protein levels, an inhibitor of apoptosis, accounts for the suppression of hid. Furthermore, before they die, vps25 mutant clones trigger non-autonomous proliferation through a failure to downregulate Notch signaling, which activates the mitogenic JAK/STAT pathway. Hid and JNK contribute to apoptosis of vps25 mutant cells. Inhibition of cell death in vps25 clones causes dramatic overgrowth phenotypes. In addition, Hippo signaling is increased in vps25 clones, and hippo mutants block apoptosis in vps25 clones. In summary, the phenotypic analysis of vps25 mutants highlights the importance of receptor downregulation by endosomal protein sorting for appropriate tissue homeostasis, and may serve as a model for human cancer.
PMCID: PMC2519036  PMID: 16611691
Vps25; ESCRT; Protein sorting; MVB; Notch; Cell proliferation; Cell survival; Apoptosis
5.  The E1 ubiquitin-activating enzyme Uba1 in Drosophila controls apoptosis autonomously and tissue growth non-autonomously 
Development (Cambridge, England)  2007;135(1):43-52.
Ubiquitination is an essential process regulating turnover of proteins for basic cellular processes such as the cell cycle and cell death (apoptosis). Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Conjugation of target proteins with ubiquitin is then mediated by ubiquitin ligases (E3). Ubiquitination has been well characterized using mammalian cell lines and yeast genetics. However, the consequences of partial or complete loss of ubiquitin conjugation in a multi-cellular organism are not well understood. Here, we report the characterization of Uba1, the only E1 in Drosophila. We found that weak and strong Uba1 alleles behave genetically differently with sometimes opposing phenotypes. Whereas weak Uba1 alleles protect cells from cell death, clones of strong Uba1 alleles are highly apoptotic. Strong Uba1 alleles cause cell cycle arrest which correlates with failure to reduce cyclin levels. Surprisingly, clones of strong Uba1 mutants stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner giving rise to overgrowth phenotypes of the mosaic fly. We demonstrate that the non-autonomous overgrowth is caused by failure to downregulate Notch signaling in Uba1 mutant clones. In summary, the phenotypic analysis of Uba1 demonstrates that impaired ubiquitin conjugation has significant consequences for the organism, and may implicate Uba1 as a tumor suppressor gene.
PMCID: PMC2277323  PMID: 18045837
Uba1; E1; Ubiquitin-activating enzyme; Apoptosis; Proliferation; Drosophila; Autonomous control; Non autonomous control
6.  Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures 
The amphiphilic fullerene monomer (AF-1) consists of a "buckyball" cage to which a Newkome-like dendrimer unit and five lipophilic C12 chains positioned octahedrally to the dendrimer unit are attached. In this study, we report a novel fullerene-based liposome termed 'buckysome' that is water soluble and forms stable spherical nanometer sized vesicles. Cryogenic electron microscopy (Cryo-EM), transmission electron microscopy (TEM), and dynamic light scattering (DLS) studies were used to characterize the different supra-molecular structures readily formed from the fullerene monomers under varying pH, aqueous solvents, and preparative conditions.
Electron microscopy results indicate the formation of bilayer membranes with a width of ~6.5 nm, consistent with previously reported molecular dynamics simulations. Cryo-EM indicates the formation of large (400 nm diameter) multilamellar, liposome-like vesicles and unilamellar vesicles in the size range of 50–150 nm diameter. In addition, complex networks of cylindrical, tube-like aggregates with varying lengths and packing densities were observed. Under controlled experimental conditions, high concentrations of spherical vesicles could be formed. In vitro results suggest that these supra-molecular structures impose little to no toxicity. Cytotoxicity of 10–200 μM buckysomes were assessed in various cell lines. Ongoing studies are aimed at understanding cellular internalization of these nanoparticle aggregates.
In this current study, we have designed a core platform based on a novel amphiphilic fullerene nanostructure, which readily assembles into supra-molecular structures. This delivery vector might provide promising features such as ease of preparation, long-term stability and controlled release.
PMCID: PMC2000908  PMID: 17683530
7.  Characterization of the Vibrio cholerae vceCAB Multiple-Drug Resistance Efflux Operon in Escherichia coli 
Journal of Bacteriology  2005;187(15):5500-5503.
Herein, we identify vceC as a component of a vceCAB operon, which codes for the Vibrio cholerae VceAB multiple-drug resistance (MDR) efflux pump, and vceR, which codes for a transcriptional autoregulatory protein that negatively regulates the expression of the vceCAB operon and is modulated by some of the substrates of this MDR efflux pump.
PMCID: PMC1196037  PMID: 16030246

Results 1-7 (7)