Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Manipulating and enhancing the RNAi response 
The phenomenon that is known as RNA mediated interference (RNAi) was first observed in the nematode C. elegans. The application of RNAi has now been widely disseminated and the mechanisms underlying the pathway have been uncovered using both genetics and biochemistry. In the worm, it has been demonstrated that RNAi is easily adapted to high throughput analysis and screening protocols. Hence, given the availability of whole genome sequences, RNAi has been used extensively as a tool for annotating gene function. Genetic screens performed with C. elegans have also led to the identification of genes that are essential for RNAi or that modulate the RNAi process. The identification of such genes has made it possible to manipulate and enhance the RNAi response. Moreover, many of the genes identified in C. elegans have been conserved in other organisms. Thus, opportunities are available for researchers to take advantage of the insights gained from the worm and apply them to their own systems in order to improve the efficiency and potency of the RNAi response.
PMCID: PMC2737212  PMID: 19771213
C. elegans; RdRP; RNA interference; siRNA; systemic RNAi
2.  The Atypical Calpains: Evolutionary Analyses and Roles in Caenorhabditis elegans Cellular Degeneration 
PLoS Genetics  2012;8(3):e1002602.
The calpains are physiologically important Ca2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca2+]i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover.
Author Summary
Calpains are calcium activated non-lysosomal proteases that cleave proteins with exquisite selectivity. Proteins can be activated by calpain cleavage, because they are released from inhibitory constraints, or they can be targeted for further degradation to facilitate their normal physiological turnover or to promote cellular remodelling. Inappropriate calpain activity can lead to degenerative pathologies and cancers. Our understanding of calpain function is based primarily on typical calpains, which carry EF hand motifs that bind Ca2+ or mediate dimerization; however, typical and atypical calpains, which lack EF hand motifs, are both present in mammals. Hence, any therapeutic intervention designed to suppress degenerative conditions, particularly those caused by elevated Ca2+ levels, should also consider the potential involvement of atypical calpains. We have taken advantage of the model organism C. elegans, which only encodes atypical calpain proteins, to gain an understanding of the evolution and activities of these proteins. We show that the CLP-1 atypical calpain is normally expressed in muscle and localizes to sarcomeric sub-structures. We find that CLP-1 contributes to the muscle degeneration observed in a model of Duchenne muscular dystrophy. Our studies also highlight the importance of calcium dysregulation in promoting CLP-1 activity and muscle degeneration.
PMCID: PMC3315469  PMID: 22479198
3.  A Genome-Wide Collection of Mos1 Transposon Insertion Mutants for the C. elegans Research Community 
PLoS ONE  2012;7(2):e30482.
Methods that use homologous recombination to engineer the genome of C. elegans commonly use strains carrying specific insertions of the heterologous transposon Mos1. A large collection of known Mos1 insertion alleles would therefore be of general interest to the C. elegans research community. We describe here the optimization of a semi-automated methodology for the construction of a substantial collection of Mos1 insertion mutant strains. At peak production, more than 5,000 strains were generated per month. These strains were then subject to molecular analysis, and more than 13,300 Mos1 insertions characterized. In addition to targeting directly more than 4,700 genes, these alleles represent the potential starting point for the engineered deletion of essentially all C. elegans genes and the modification of more than 40% of them. This collection of mutants, generated under the auspices of the European NEMAGENETAG consortium, is publicly available and represents an important research resource.
PMCID: PMC3275553  PMID: 22347378
4.  C. elegans patched-3 is an essential gene implicated in osmoregulation and requiring an intact permease transporter domain 
Developmental Biology  2011;351(2-4):242-253.
The nematode Caenorhabditis elegans has retained a rudimentary Hedgehog (Hh) signalling pathway; Hh and Smoothened (Smo) homologs are absent, but two highly related Patched gene homologs, ptc-1 and ptc-3, and 24 ptc-related (ptr) genes are present. We previously showed that ptc-1 is essential for germ line cytokinesis. Here, we report that ptc-3 is also an essential gene; the absence of ptc-3 results in a late embryonic lethality due to an apparent defect in osmoregulation. Rescue of a ptc-3 mutant with a ptc-3::gfp translational reporter reveals that ptc-3 is dynamically expressed in multiple tissues across development. Consistent with this pattern of expression, ptc-3(RNAi) reveals an additional postembryonic requirement for ptc-3 activity. Tissue-specific promoter studies indicate that hypodermal expression of ptc-3 is required for normal development. Missense changes in key residues of the sterol sensing domain (SSD) and the permease transporter domain GxxxD/E motif reveal that the transporter domain is essential for PTC-3 activity, whereas an intact SSD is dispensable. Taken together, our studies indicate that PTC proteins have retained essential roles in C. elegans that are independent of Smoothened (Smo). These observations reveal novel, and perhaps ancestral, roles for PTC proteins.
Research Highlights
► C. elegans lacks conventional Hedgehog signalling, yet ptc-3 is an essential gene. ► Deletion of ptc-3 causes a lethal defect in osmoregulation. ► ptc-3 epidermal expression is necessary and sufficient for viability. ► An intact sterol sensing domain is dispensable for ptc-3 activity. ► Missense mutations highlight the importance of the ptc-3 transporter domain.
PMCID: PMC3078328  PMID: 21215260
Patched; Hedgehog; Transporter; Permease; Sterol sensing domain
5.  Sex Determination in Caenorhabditis elegans 
Journal of Nematology  1992;24(3):324-329.
In Caenorhabditis elegans, the decision to develop as a hermaphrodite or male is controlled by a cascade of regulatory genes. These genes and other tissue-specific regulatory genes also control sexual fate in the hermaphrodite germline, which makes sperm first and then oocytes. In this review, we summarize the genetic and molecular characterization of these genes and speculate how they mutually interact to specify sexual fate.
PMCID: PMC2619291  PMID: 19283004
Caenorhabditis elegans; hermaphrodite; nematode; sex determination
6.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics 
PLoS Biology  2003;1(2):e45.
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.
With the Caenorhabditis briggsae genome now in hand, C. elegans biologists have a powerful new research tool to refine their knowledge of gene function in C. elegans and to study the path of genome evolution
PMCID: PMC261899  PMID: 14624247

Results 1-6 (6)