PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A study on comparison of Gafchromic EBT2 film response under single and cumulative exposure conditions 
Gafchromic films are used as dosimeter for in vivo and in phantom dose measurements. The dose response of Gafchromic EBT2 film under single and repeated exposure conditions is compared in this study to analyze the usability of Gafchromic EBT2 films in cumulative dose measurements. The post-irradiation change in response of the film is studied for up to 4 days after irradiation. The effect of repeated exposure to scanner light on the response of the film is also studied. To check usability of Gafchromic EBT2 films in cumulative dose measurements, three EBT2 films were exposed to a daily fraction dose of 100 cGy, 150 cGy and 200 cGy, respectively, for 4 days. The dose response of the films exposed to cumulative irradiation was compared with the dose measured from films exposed to the same dose but in a single exposure. It is observed that the post-irradiation darkening of the film does not saturate and continue to take place even 4 days after irradiation. The dose measured from the EBT2 films after 4 days from irradiation was around 2% higher than the dose measured from the same films at 24 hours post-irradiation. It was also observed that the repeated exposure to scanner light does not produce any significant change in the film response. The dose response of films exposed to cumulative irradiation agrees with the dose response of films exposed to the same dose in a single irradiation with less than 3% difference. Gafchromic EBT2 films can be used to measure the cumulative dose delivered over multiple fractions, when the delivered dose is uniform across the film.
doi:10.4103/0971-6203.121194
PMCID: PMC3958996  PMID: 24672151
Gafchromic EBT2 film; Post irradiation darkening of EBT2 film; Re usability of EBT2 film
2.  Comparative analysis between 5 mm and 7.5 mm collimators in CyberKnife radiosurgery for trigeminal neuralgia 
Trigeminal neuralgia (TN) is treated in CyberKnife (Accuray Inc, Sunnyvale, USA) with the 5 mm collimator whose dosimetric inaccuracy is higher than the other available collimators. The 7.5 mm collimator which is having less dosimetric uncertainty can be an alternative for 5 mm collimator provided the dose distribution with 7.5 mm collimator is acceptable. Aim of this study is to analyze the role of 7.5 mm collimator in CyberKnife treatment plans of TN. The treatment plans with 5 mm collimators were re-optimized with 7.5 mm collimator and a bi-collimator system (5 mm and 7.5 mm). The treatment plans were compared for target coverage, brainstem doses, and the dose to normal tissues. The target and brainstem doses were comparable. However, the conformity indices were 2.31 ± 0.52, 2.40 ± 0.87 and 2.82 ± 0.51 for 5 mm, bi-collimator (5mm and 7.5 mm), 7.5 mm collimator plans respectively. This shows the level of dose spillage in 7.5 mm collimator plans. The 6 Gy dose volumes in 7.5 mm plans were 1.53 and 1.34 times higher than the 5 mm plan and the bi-collimator plans respectively. The treatment time parameters were lesser for 7.5 mm collimators. Since, the normal tissue dose is pretty high in 7.5 mm collimator plans, the use of it in TN plans can be ruled out though the treatment time is lesser for these 7.5 mm collimator plans.
doi:10.4103/0971-6203.116364
PMCID: PMC3775035  PMID: 24049318
Collimators; CyberKnife; stereotactic radiosurgery; trigeminal neuralgia
3.  A study on rectal dose measurement in phantom and in vivo using Gafchromic EBT3 film in IMRT and CyberKnife treatments of carcinoma of prostate 
The objective of this study is to check the feasibility of in vivo rectal dose measurement in intensity-modulated radiotherapy (IMRT) and CyberKnife treatments for carcinoma prostate. An in-house pelvis phantom made with bee's wax was used in this study. Two cylindrical bone equivalent materials were used to simulate the femur. Target and other critical structures associated with carcinoma prostate were delineated on the treatment planning images by the radiation oncologist. IMRT treatment plan was generated in Oncentra Master Plan treatment planning system and CyberKnife treatment plan was generated in Multiplan treatment planning system. Dose measurements were carried out in phantom and in patient using Gafchromic EBT3 films. RIT software was used to analyze the dose measured by EBT3 films. The measured doses using EBT3 films were compared with the TPS-calculated dose along the anterior rectal wall at multiple points. From the in-phantom measurements, it is observed that the difference between calculated and measured dose was mostly within 5%, except for a few measurement points. The difference between calculated and measured dose in the in-patient measurements was higher than 5% in regions which were away from the target. Gafchromic EBT3 film is a suitable detector for in vivo rectal dose measurements as it offers the possibility of analyzing the dose at multiple points. In addition, the method of extending this in vivo rectal dose measurement technique as a tool for patient-specific quality assurance check is also analyzed.
doi:10.4103/0971-6203.116372
PMCID: PMC3775037  PMID: 24049320
Gafchromic EBT3; in vivo dosimetry; rectal dose measurement
4.  Patient dose analysis in total body irradiation through in vivo dosimetry 
Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol.
doi:10.4103/0971-6203.103607
PMCID: PMC3532750  PMID: 23293453
In vivo dosimetry; lithium fluoride; total body irradiation; TLD-100
5.  Dosimetric analysis of trigeminal nerve, brain stem doses in CyberKnife radiosurgery of trigeminal neuralgia 
CyberKnife radiosurgery treatment of Trigeminal neuralgia (TN) is performed as a non-invasive image guided procedure. The prescription dose for TN is very high. The brainstem is the adjacent critical organ at risk (OAR) which is prone to receive the very high target dose of TN. The present study is to analyze the dose distribution inside the tiny trigeminal nerve target and also to analyze the dose fall off in the brain stem. Seven TN cases treated between November 2010 and January 2012 were taken for this study retrospectively. The treatment plans were analyzed for target dose conformity, homogeneity and dose coverage. In the brainstem the volume doses D1%, D2% were taken for analyzing the higher doses in the brain stem. The dose fall off was analyzed in terms of D5% and D10%. The mean value of maximum dose within the trigeminal nerve target was 73.5±2.1Gy (P=0.0007) and the minimum dose was 50.0±4.1Gy (P=0.1315). The mean conformity index was 2.19 and the probable reason could be the smallest CyberKnife collimator of 5mm used in the treatment plan. The mean D1%, of the brainstem was 10.5± 2.1Gy (P=0.5316) and the mean value of the maximum point dose within the brainstem was 35.6±3.8Gy. This shows the degree of dose fall off within the brainstem. Though the results of the present study are showing superior sparing of brain stem and reasonable of target coverage, it is necessary to execute the treatment plan with greater accuracy in CyberKnife as the immobilization is noninvasive and frameless.
doi:10.4103/0971-6203.99225
PMCID: PMC3437168  PMID: 22973078
Brainstem dose; cyberknife; stereotactic radiosurgery; trigeminal neuralgia
6.  Equivalent normalized total dose estimates in cyberknife radiotherapy dose delivery in prostate cancer hypofractionation regimens 
As the α/β value of prostate is very small and lower than the surrounding critical organs, hypofractionated radiotherapy became a vital mode of treatment of prostate cancer. Cyberknife (Accuray Inc., Sunnyvale, CA, USA) treatment for localized prostate cancer is performed in hypofractionated dose regimen alone. Effective dose escalation in the hypofractionated regimen can be estimated if the corresponding conventional 2 Gy per fraction equivalent normalized total dose (NTD) distribution is known. The present study aims to analyze the hypofractionated dose distribution of localized prostate cancer in terms of equivalent NTD. Randomly selected 12 localized prostate cases treated in cyberknife with a dose regimen of 36.25 Gy in 5 fractions were considered. The 2 Gy per fraction equivalent NTDs were calculated using the formula derived from the linear quadratic (LQ) model. Dose distributions were analyzed with the corresponding NTDs. The conformity index for the prescribed target dose of 36.25 Gy equivalent to the NTD dose of 90.63 Gy (α/β = 1.5) or 74.31 Gy (α/β = 3) was ranging between 1.15 and 1.73 with a mean value of 1.32 ± 0.15. The D5% of the target was 111.41 ± 8.66 Gy for α/β = 1.5 and 90.15 ± 6.57 Gy for α/β = 3. Similarly, the D95% was 91.98 ± 3.77 Gy for α/β = 1.5 and 75.35 ± 2.88 Gy for α/β = 3. The mean values of bladder and rectal volume receiving the prescribed dose of 36.25 Gy were 0.83 cm3 and 0.086 cm3, respectively. NTD dose analysis shows an escalated dose distribution within the target for low α/β (1.5 Gy) with reasonable sparing of organs at risk. However, the higher α/β of prostate (3 Gy) is not encouraging the fact of dose escalation in cyberknife hypofractionated dose regimen of localized prostate cancer.
doi:10.4103/0971-6203.94743
PMCID: PMC3339148  PMID: 22557798
Cyberknife; hypofractionation; localized prostate; low α/β; normalized total dose
7.  Dose linearity and monitor unit stability of a G4 type cyberknife robotic stereotactic radiosurgery system 
Dose linearity studies on conventional linear accelerators show a linearity error at low monitor units (MUs). The purpose of this study was to establish the dose linearity and MU stability characteristics of a cyberknife (Accuray Inc., USA) stereotactic radiosurgery system. Measurements were done at a depth of 5 cm in a stereotactic dose verification phantom with a source to surface distance of 75 cm in a Generation 4 (G4) type cyberknife system. All the 12 fixed-type collimators starting from 5 to 60 mm were used for the dose linearity study. The dose linearity was examined in small (1–10), medium (15–100) and large (125–1000) MU ranges. The MU stability test was performed with 60 mm collimator for 10 MU and 20 MU with different combinations. The maximum dose linearity error of –38.8% was observed for 1 MU with 5 mm collimator. Dose linearity error in the small MU range was considerably higher than in the medium and large MU ranges. The maximum error in the medium range was –2.4%. In the large MU range, the linearity error varied between –0.7% and 1.2%. The maximum deviation in the MU stability was –3.03%.
doi:10.4103/0971-6203.92714
PMCID: PMC3283915  PMID: 22363106
Cyberknife; dose linearity; monitor unit stability; small monitor units
8.  Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer 
Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.
doi:10.4103/0971-6203.62201
PMCID: PMC2884303  PMID: 20589121
Brachytherapy; conformity; intensity modulated radiotherapy; prostate
9.  Advantages of mini-multileaf in stereotactic radiotherapy 
Over the past few decades, cones of different diameter (12.5 mm to 40 mm) were used for treatment of intracranial lesions. These give very focused dose delivery to the target with minimum dose to outside normal brain tissues. This study is intended to compare the older method of arc-based stereotactic treatments using cones with the new mini-multileaf collimator (mMLC). Treatment plans are made for various sites of intracranial lesions with the cones and mMLC. In case of nonspherical lesions, more than one isocenter is used to get an optimum dose distribution with cones, while a single isocenter is sufficient with mMLC. Treatment plans are compared for irregular lesions using cones with multiple isocenters and mMLC. It is observed that conformity index and dose heterogeneity are better for mMLC based treatments.
doi:10.4103/0971-6203.31144
PMCID: PMC3003882  PMID: 21217913
Dose-volume histograms; mini-multileaf collimator; stereotactic radiosurgery

Results 1-9 (9)