PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Vascular endothelial growth factor receptor-3 promotes breast cancer cell proliferation, motility and survival in vitro and tumor formation in vivo 
Cell cycle (Georgetown, Tex.)  2009;8(14):2266-2280.
Vascular endothelial growth factor receptor-3 is a receptor tyrosine kinase that is overexpressed in some human carcinomas, but its role in tumorigenesis has not been fully elucidated. We examined VEGFR-3 expression in normal, nonneoplastic and early stage malignant breast tissues and have shown that VEGFR-3 upregulation in breast cancer preceded tumor cell invasion, suggesting that VEGFR-3 may function as a survival signal. We characterized the biological effects of VEGFR-3 over-expression in human breast cancer cells based on two approaches: gain of function by overexpressing VEGFR-3 in MCF-7 breast cancer cells and loss of function by RNAi-mediated silencing of VEGFR-3 in MCF-7-VEGFR-3 and BT474 cells.
VEGFR-3 overexpression increased cellular proliferation by 40% when MCF7-VEGFR-3 cells were compared to parental MCF7 cells, and proliferation was reduced by more than 40% when endogenous VEGFR-3 was downregulated in BT474 cells. VEGFR-3 overexpression promoted a three-fold increase in motility and invasion and both motility and invasion were inhibited by downregulation of VEGFR-3. Furthermore, VEGFR-3 overexpression promoted cellular survival under stress conditions induced by staurosporine treatment and led to anchorage-independent growth.
VEGFR-3 overexpression dramatically increased tumor formation in both hormone-dependent and independent xenograft models. With estrogen stimulation, MCF7-VEGFR-3 xenografts were ten times larger than control xenografts. Finally, downregulation of VEGFR-3 expression in both xenograft model cell lines led to a significant reduction of tumor growth. For the first time, we have demonstrated that VEGFR-3 overexpression promotes breast cancer cell proliferation, motility, survival, anchorage-independent growth and tumorogenicity in the absence of ligand expression.
PMCID: PMC3619978  PMID: 19556880
vascular endothelial growth factor receptor-3; VEGFR-3; Flt-4; receptor tyrosine kinases; breast cancer; tumorigenicity; carcinogenesis
2.  The Small Molecule Chloropyramine Hydrochloride (C4) Targets the Binding Site of Focal Adhesion Kinase and Vascular Endothelial Growth Factor Receptor 3 and Suppresses Breast Cancer Growth in vivo 
Journal of medicinal chemistry  2009;52(15):4716-4724.
FAK is a tyrosine kinase that functions as a key orchestrator of signals leading to invasion and metastasis. Since FAK interacts directly with a number of critical proteins involved in survival signaling in tumor cells, we hypothesized that targeting a key protein-protein interface with drug-like small molecules was a feasible strategy for inhibiting tumor growth. In this study, we targeted the protein-protein interface between FAK and VEGFR-3 and identified compound C4 (chloropyramine hydrochloride) as a drug capable of 1) inhibiting the biochemical function of VEGFR-3 and FAK, 2) inhibiting proliferation of a diverse set of cancer cell types in vitro, and 3) reducing tumor growth in vivo. Chloropyramine hydrochloride reduced tumor growth as a single agent, while concomitant administration with doxorubicin had a pronounced synergistic effect. Our data demonstrate that the FAK-VEGFR-3 interaction can be targeted by small drug-like molecules and this interaction can provide the basis for highly-specific novel cancer therapeutics.
doi:10.1021/jm900159g
PMCID: PMC2765121  PMID: 19610651
3.  Crystallization of the focal adhesion kinase targeting (FAT) domain in a primitive orthorhombic space group 
X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Å resolution.
X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Å resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.
doi:10.1107/S1744309108011421
PMCID: PMC2496861  PMID: 18540077
focal adhesion kinase; targeting domain
4.  Inhibition of Focal Adhesion Kinase and Src Increases Detachment and Apoptosis in Human Neuroblastoma Cell Lines 
Molecular carcinogenesis  2010;49(3):224-234.
Neuroblastoma is the most common extracranial solid tumor of childhood. Focal adhesion kinase (FAK) is an intracellular kinase that is overexpressed in a number of human tumors including neuroblastoma, and regulates both cellular adhesion and survival. We have studied the effects of FAK inhibition upon neuroblastoma using adenovirus-containing FAK-CD (AdFAK-CD). Utilizing an isogenic MYCN+ / MYCN− neuroblastoma cell line, we found that the MYCN+ cells are more sensitive to FAK inhibition with AdFAK-CD than their MYCN negative counterparts. In addition, we have shown that phosphorylation of Src is increased in the untreated isogenic MYCN− neuroblastoma cells, and that the decreased sensitivity of the MYCN− neuroblastoma cells to FAK inhibition with AdFAK-CD is abrogated by the addition of the Src family kinase inhibitor, PP2. The results of the current study suggest that both FAK and Src play a role in protecting neuroblastoma cells from apoptosis, and that dual inhibition of these kinases may be important when designing therapeutic interventions for this tumor.
doi:10.1002/mc.20592
PMCID: PMC2849163  PMID: 19885861
Pediatric; Cancer; MYCN oncogene
5.  FAK and IGF-IR interact to provide survival signals in human pancreatic adenocarcinoma cells 
Carcinogenesis  2008;29(6):1096-1107.
Pancreatic cancer is a lethal disease accounting for the fourth leading cause of cancer death in USA. Focal adhesion kinase (FAK) and the insulin-like growth factor-I receptor (IGF-1R) are tyrosine kinases that activate common pathways, leading to increased proliferation and cell survival. Sparse information is available regarding their contribution to the malignant behavior of pancreatic cancer. We analyzed the relationship between FAK and IGF-1R in human pancreatic cancer cells, determined which downstream signaling pathways are altered following kinase inhibition or downregulation and studied whether dual kinase inhibition represents a potential novel treatment strategy in this deadly disease. Using immunoprecipitation and confocal microscopy, we show for the first time that FAK and IGF-1R physically interact in pancreatic cancer cells and that inhibition of tyrosine phosphorylation of either kinase disrupts their interaction. Decreasing phosphorylation of either FAK or IGF-1R alone resulted in little inhibition of cell viability or increased apoptosis. However, dual inhibition of FAK, using either a dominant-negative construct (FAK-CD) or small interfering RNA, and IGF-1R, using a specific small molecule tyrosine kinase inhibitor (AEW-541) or stable expression of a truncated, mutated IGF-1R, led to a synergistic decrease in cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) and increase in cell detachment and apoptosis compared with inhibition of either pathway alone. Dual kinase inhibition with FAK-CD and AEW-541 resulted in a marked increase in apoptosis when FAK was displaced from the focal adhesions. Inhibition of both tyrosine kinase activities via a novel single small molecular inhibitor (TAE 226), at low doses specific for FAK and IGF-1R, resulted in significant inhibition of cell viability, decrease in phosphorylation of ERK and Akt and increase in apoptosis accompanied by cleavage of Poly (ADP-ribose) polymerase (PARP) and activation of caspase-3 in pancreatic cancer cells. Thus, simultaneous inhibition of both tyrosine kinases represents a potential novel therapeutic approach in human pancreatic adenocarcinoma.
doi:10.1093/carcin/bgn026
PMCID: PMC2902396  PMID: 18263593

Results 1-5 (5)