PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties 
Nanomedicine (London, England)  2009;4(4):421-429.
Aims
Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity.
Materials & methods
These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth.
Results & discussion
The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli.
Conclusion
These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications.
doi:10.2217/nnm.09.24
PMCID: PMC2717895  PMID: 19505245
antimicrobial; Escherichia coli; silver heparin nanoparticles; silver hyaluronan nanoparticles; silver nanoparticles; Staphylococcus aureus
2.  Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans having Distinctive Biological Activities 
Biomacromolecules  2009;10(3):589-595.
Metal nanoparticles have been studied for their anticoagulant and anti-inflammatory efficacy in various models. Specifically, gold and silver nanoparticles exhibit properties that make these ideal candidates for biological applications. The typical synthesis of gold and silver nanoparticles incorporates contaminants that could pose further problems. Here we demonstrate a clean method of synthesizing gold and silver nanoparticles that exhibit biological functions. These nanoparticles were prepared by reducing AuCl4 and AgNO3 using heparin and hyaluronan, as both reducing and stabilizing agents. The particles show stability under physiological conditions, and narrow size distributions for heparin particles and wider distribution for hyaluronan particles. Studies show that the heparin nanoparticles exhibit anticoagulant properties. Additionally, either gold- or silver- heparin nanoparticles exhibit local anti-inflammatory properties without any significant effect on systemic hemostasis upon administration in carrageenan-induced paw edema models. In conclusion, gold and silver nanoparticles complexed with heparin demonstrated effective anticoagulant and anti-inflammatory efficacy, having potential in various local applications.
doi:10.1021/bm801266t
PMCID: PMC2765565  PMID: 19226107

Results 1-2 (2)