PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("krall, Rainer")
1.  Pretreatment long interspersed element (LINE)-1 methylation levels, not early hypomethylation under treatment, predict hematological response to azacitidine in elderly patients with acute myeloid leukemia 
OncoTargets and therapy  2013;6:741-748.
Background
Epigenetic modulations, including changes in DNA cytosine methylation, are implicated in the pathogenesis and progression of acute myeloid leukemia (AML). Azacitidine is a hypomethylating agent that is incorporated into RNA as well as DNA. Thus, there is a rationale to its use in patients with AML. We determined whether baseline and/or early changes in the methylation of long interspersed element (LINE)-1 or CDH13 correlate with bone marrow blast clearance, hematological response, or survival in patients with AML treated with azacitidine.
Methods
An open label, phase I/II trial was performed in 40 AML patients (median bone marrow blast count was 42%) unfit for intensive chemotherapy treated with azacitidine 75 mg/m2/day subcutaneously for 5 days every 4 weeks. Bone marrow mononuclear cell samples were taken on day 0 (pretreatment) and day 15 during the first treatment cycle; LINE-1 and CDH13 methylation levels were quantified by methylation-specific, semiquantitative, real-time polymerase chain reaction.
Results
Treatment with azacitidine significantly reduced LINE-1 but not CDH13 methylation levels over the first cycle (P < 0.0001). Absolute LINE-1 methylation levels tended to be lower on day 0 (P = 0.06) and day 15 of cycle 1 (P = 0.03) in patients who went on to achieve subsequent complete remission, partial remission or hematological improvement versus patients with stable disease. However, the decrease in LINE-1 methylation over the first treatment cycle did not correlate with subsequent response (P = 0.31). Baseline methylation levels of LINE-1 or CDH13 did not correlate with disease-related prognostic factors, including cytogenetic risk, relapsed/refractory AML, or presence of NPM1 or FLT3 mutations. No correlation was observed between LINE-1 or CDH13 methylation levels and overall survival.
Conclusion
Analysis of baseline LINE-1 methylation levels may help identify elderly AML patients who are most likely to respond to azacitidine therapy.
doi:10.2147/OTT.S45459
PMCID: PMC3699298  PMID: 23836986
DNA methylation; acute myeloid leukemia; azacitidine; clinical response; CDH13; LINE-1 methylation
2.  Kinetics of iron removal by phlebotomy in patients with iron overload after allogeneic hematopoietic cell transplantation 
Excess body iron could persist for years after allogeneic hematopoietic cell transplantation (HCT) with possible deleterious sequels. An iron depletive therapy with phlebotomy seems rational. Kinetics of iron removal by phlebotomy without erythropoietin support in non-thalassemic adult patients with iron overload after HCT and the impact of pre- and post-HCT hemochromatosis (HFE) genotype on iron mobilization were investigated. Patients and methods: Phlebotomy was initiated in 61 recipients of allografts due to hematologic malignancies (median age 48 years) after a median of 18 months. The prephlebotomy median serum ferritin (SF) was 1697ng/ml and the median number of blood transfusions 28 units. Alanine aminotransferase (ALT)/aspartate aminotransferase (AST), alkaline phosphates (AP), and bilirubin were elevated in 55.7%, 64% and 11.5% patients respectively. HFE-genotype was elucidated by polymerase chain reaction using hybridization probes and melting curve analysis. Results: Phlebotomy was well-tolerated irrespective of age or conditioning. A negative iron balance in 80% of patients (median SF 1086 ng/ml) and a rise in hemoglobin were observed (p<0.0001). Higher transfusional burden and SF were associated with a greater iron mobilization per session (p=0.02). In 58% of patients, a plateau after an initial steady decline in SF was followed by a second decline under further phlebotomy. The improvement in ALT (p=0.002), AST (p=0.03), AP (p=0.01), and bilirubin (p<0.0001) did not correlate with the decline in SF. Mutant HFE-gene variants were detected in 14/55 (25%) pre-HCT and 22/55 (40%) patients post-HCT. Overall, dissimilar pre- and posttransplantational HFE-genotypes were detected in 20/55 (40%) patients. Posttransplantational mutant HFE variants correlated with a slower decline in SF (p=0.007). Conclusions: Phlebotomy is a convenient therapy of iron overload in survivors of HCT. A negative iron balance and a rise in hemoglobin were observed in the majority of patients. Liver dysfunction improved irrespective of SF reduction suggesting a probable rapid decline of the deleterious labile plasma iron. In recipients of grafts with mutant HFE variants a “mixed chimerism” of HFE in body tissues might be created with a change in the set point for iron regulation. The transient plateau in SF after an initial decline might reflect iron mobilization from various tissues.
PMCID: PMC3512175  PMID: 23226624
Iron overload; ferritin; phlebotomy; allogeneic HCT
3.  Highly Elevated Serum Hepcidin in Patients with Acute Myeloid Leukemia prior to and after Allogeneic Hematopoietic Cell Transplantation: Does This Protect from Excessive Parenchymal Iron Loading? 
Advances in Hematology  2011;2011:491058.
Hepcidin is upregulated by inflammation and iron. Inherited (HFE genotype) and treatment-related factors (blood units (BU), Iron overload) affecting hepcidin (measured by C-ELISA) were studied in 42 consecutive patients with AML prior to and after allogeneic hematopoietic cell transplantation (HCT). Results. Elevated serum ferritin pre- and post-HCT was present in all patients. Median hepcidin pre- and post-HCT of 358 and 398 ng/mL, respectively, were elevated compared to controls (median 52 ng/mL) (P < .0001). Liver and renal function, prior chemotherapies, and conditioning had no impact on hepcidin. Despite higher total BU after HCT compared to pretransplantation (P < .0005), pre- and posttransplant ferritin and hepcidin were similar. BU influenced ferritin (P = .001) and hepcidin (P = .001). No correlation of pre- or posttransplant hepcidin with pretransplant ferritin was found. HFE genotype did not influence hepcidin. Conclusions. Hepcidin is elevated in AML patients pre- and post-HCT due to transfusional iron-loading suggesting that hepcidin synthesis remains intact despite chemotherapy and HCT.
doi:10.1155/2011/491058
PMCID: PMC3112503  PMID: 21687645

Results 1-3 (3)