PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
2.  Myoblast-conditioned media improve regeneration and revascularization of ischemic muscles in diabetic mice 
Introduction
Diabetes is associated with reduced expression of heme oxygenase-1 (HO-1), a heme-degrading enzyme with cytoprotective and proangiogenic properties. In myoblasts and muscle satellite cells HO-1 improves survival, proliferation and production of proangiogenic growth factors. Induction of HO-1 in injured tissues facilitates neovascularization, the process impaired in diabetes. We aimed to examine whether conditioned media from the HO-1 overexpressing myoblast cell line can improve a blood-flow recovery in ischemic muscles of diabetic mice.
Methods
Analysis of myogenic markers was performed at the mRNA level in primary muscle satellite cells, isolated by a pre-plate technique from diabetic db/db and normoglycemic wild-type mice, and then cultured under growth or differentiation conditions. Hind limb ischemia was performed by femoral artery ligation in db/db mice and blood recovery was monitored by laser Doppler measurements. Mice were treated with a single intramuscular injection of conditioned media harvested from wild-type C2C12 myoblast cell line, C2C12 cells stably transduced with HO-1 cDNA, or with unconditioned media.
Results
Expression of HO-1 was lower in muscle satellite cells isolated from muscles of diabetic db/db mice when compared to their wild-type counterparts, what was accompanied by increased levels of Myf5 or CXCR4, and decreased Mef2 or Pax7. Such cells also displayed diminished differentiation potential when cultured in vitro, as shown by less effective formation of myotubes and reduced expression of myogenic markers (myogenic differentiation antigen - myoD, myogenin and myosin). Blood flow recovery after induction of severe hind limb ischemia was delayed in db/db mice compared to that in normoglycemic individuals. To improve muscle regeneration after ischemia, conditioned media collected from differentiating C2C12 cells (control and HO-1 overexpressing) were injected into hind limbs of diabetic mice. Analysis of blood flow revealed that media from HO-1 overexpressing cells accelerated blood-flow recovery, while immunohistochemical staining assessment of vessel density in injected muscle confirmed increased angiogenesis. The effect might be mediated by stromal-cell derived factor-1α proangiogenic factor, as its secretion is elevated in HO-1 overexpressing cells.
Conclusions
In conclusion, paracrine stimulation of angiogenesis in ischemic skeletal muscle using conditioned media may be a safe approach exploiting protective and proangiogenic properties of HO-1 in diabetes.
doi:10.1186/s13287-015-0063-8
PMCID: PMC4431532  PMID: 25889676
3.  Role of Heme Oxygenase-1 in Postnatal Differentiation of Stem Cells: A Possible Cross-Talk with MicroRNAs 
Antioxidants & Redox Signaling  2014;20(11):1827-1850.
Abstract
Significance: Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. Recent Advances: Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. Critical Issues: In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. Future Directions: It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies. Antioxid. Redox Signal. 20, 1827–1850.
doi:10.1089/ars.2013.5341
PMCID: PMC3961774  PMID: 24053682
4.  Nrf2 Regulates Angiogenesis: Effect on Endothelial Cells, Bone Marrow-Derived Proangiogenic Cells and Hind Limb Ischemia 
Antioxidants & Redox Signaling  2014;20(11):1693-1708.
Abstract
Aims: Nuclear factor E2-related factor 2 (Nrf2), a key cytoprotective transcription factor, regulates also proangiogenic mediators, interleukin-8 and heme oxygenase-1 (HO-1). However, hitherto its role in blood vessel formation was modestly examined. Particularly, although Nrf2 was shown to affect hematopoietic stem cells, it was not tested in bone marrow-derived proangiogenic cells (PACs). Here we investigated angiogenic properties of Nrf2 in PACs, endothelial cells, and inflammation-related revascularization. Results: Treatment of endothelial cells with angiogenic cytokines increased nuclear localization of Nrf2 and induced expression of HO-1. Nrf2 activation stimulated a tube network formation, while its inhibition decreased angiogenic response of human endothelial cells, the latter effect reversed by overexpression of HO-1. Moreover, lack of Nrf2 attenuated survival, proliferation, migration, and angiogenic potential of murine PACs and affected angiogenic transcriptome in vitro. Additionally, angiogenic capacity of PAC Nrf2−/− in in vivo Matrigel assay and PAC mobilization in response to hind limb ischemia of Nrf2−/− mice were impaired. Despite that, restoration of blood flow in Nrf2-deficient ischemic muscles was better and accompanied by increased oxidative stress and inflammatory response. Accordingly, the anti-inflammatory agent etodolac tended to diminish blood flow in the Nrf2−/− mice. Innovation: Identification of a novel role of Nrf2 in angiogenic signaling of endothelial cells and PACs. Conclusion: Nrf2 contributes to angiogenic potential of both endothelial cells and PACs; however, its deficiency increases muscle blood flow under tissue ischemia. This might suggest a proangiogenic role of inflammation in the absence of Nrf2 in vivo, concomitantly undermining the role of PACs in such conditions. Antioxid. Redox Signal. 20, 1693–1708.
doi:10.1089/ars.2013.5219
PMCID: PMC3961841  PMID: 24053644
5.  PPARγ activation but not PPARγ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors 
Background
Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs).
Methods
PACs were isolated from bone marrow of 10–12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 μmol/L) or GW9662 (10 μmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model.
Results
ECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells.
Transcriptome analysis showed an upregulation of prooxidative and proinflammatory pathways, and downregulation of several proangiogenic genes in db/db PACs. Interestingly, db/db PACs had also a decreased level of PPARγ and changed expression of PPARγ-regulated genes. Using normoglycemic PPARγ+/− mice we demonstrated that reduced expression of PPARγ does not influence neovascularization either in wound healing or in hind limb ischemia models.
Conclusions
In summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis.
Electronic supplementary material
The online version of this article (doi:10.1186/s12933-014-0150-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s12933-014-0150-7
PMCID: PMC4233236  PMID: 25361524
Diabetes; PPARγ; Therapeutic angiogenesis; Endothelial progenitor cells
6.  Interplay Between Heme Oxygenase-1 and miR-378 Affects Non-Small Cell Lung Carcinoma Growth, Vascularization, and Metastasis 
Antioxidants & Redox Signaling  2013;19(7):644-660.
Abstract
Aims: Heme oxygenase-1 (HO-1, HMOX1) can prevent tumor initiation; while in various tumors, it has been demonstrated to promote growth, angiogenesis, and metastasis. Here, we investigated whether HMOX1 can modulate microRNAs (miRNAs) and regulate human non-small cell lung carcinoma (NSCLC) development. Results: Stable HMOX1 overexpression in NSCLC NCI-H292 cells up-regulated tumor-suppressive miRNAs, whereas it significantly diminished the expression of oncomirs and angiomirs. The most potently down-regulated was miR-378. HMOX1 also up-regulated p53, down-regulated angiopoietin-1 (Ang-1) and mucin-5AC (MUC5AC), reduced proliferation, migration, and diminished angiogenic potential. Carbon monoxide was a mediator of HMOX1 effects on proliferation, migration, and miR-378 expression. In contrast, stable miR-378 overexpression decreased HMOX1 and p53; while enhanced expression of MUC5AC, vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and Ang-1, and consequently increased proliferation, migration, and stimulation of endothelial cells. Adenoviral delivery of HMOX1 reversed miR-378 effect on the proliferation and migration of cancer cells. In vivo, HMOX1 overexpressing tumors were smaller, less vascularized and oxygenated, and less metastatic. Overexpression of miR-378 exerted opposite effects. Accordingly, in patients with NSCLC, HMOX1 expression was lower in metastases to lymph nodes than in primary tumors. Innovation and Conclusion: In vitro and in vivo data indicate that the interplay between HMOX1 and miR-378 significantly modulates NSCLC progression and angiogenesis, suggesting miR-378 as a new therapeutic target. Rebound Track: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16, 293–296, 2012) with the following serving as open reviewers: James F. George, Mahin D. Maines, Justin C. Mason, and Yasufumi Sato. Antioxid. Redox Signal. 19, 644–660.
doi:10.1089/ars.2013.5184
PMCID: PMC3740397  PMID: 23617628
7.  Heme Oxygenase-1 Is Required for Angiogenic Function of Bone Marrow-Derived Progenitor Cells: Role in Therapeutic Revascularization 
Antioxidants & Redox Signaling  2014;20(11):1677-1692.
Abstract
Aims: Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that can be down-regulated in diabetes. Its importance for mature endothelium has been described, but its role in proangiogenic progenitors is not well known. We investigated the effect of HO-1 on the angiogenic potential of bone marrow-derived cells (BMDCs) and on blood flow recovery in ischemic muscle of diabetic mice. Results: Lack of HO-1 decreased the number of endothelial progenitor cells (Lin−CD45−cKit-Sca-1+VEGFR-2+) in murine bone marrow, and inhibited the angiogenic potential of cultured BMDCs, affecting their survival under oxidative stress, proliferation, migration, formation of capillaries, and paracrine proangiogenic potential. Transcriptome analysis of HO-1−/− BMDCs revealed the attenuated up-regulation of proangiogenic genes in response to hypoxia. Heterozygous HO-1+/− diabetic mice subjected to hind limb ischemia exhibited reduced local expression of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), stromal cell-derived factor 1 (SDF-1), VEGFR-1, VEGFR-2, and CXCR-4. This was accompanied by impaired revascularization of ischemic muscle, despite a strong mobilization of bone marrow-derived proangiogenic progenitors (Sca-1+CXCR-4+) into peripheral blood. Blood flow recovery could be rescued by local injections of conditioned media harvested from BMDCs, but not by an injection of cultured BMDCs. Innovation: This is the first report showing that HO-1 haploinsufficiency impairs tissue revascularization in diabetes and that proangiogenic in situ response, not progenitor cell mobilization, is important for blood flow recovery. Conclusions: HO-1 is necessary for a proper proangiogenic function of BMDCs. A low level of HO-1 in hyperglycemic mice decreases restoration of perfusion in ischemic muscle, which can be rescued by a local injection of conditioned media from cultured BMDCs. Antioxid. Redox Signal. 20, 1677–1692.
doi:10.1089/ars.2013.5426
PMCID: PMC3961799  PMID: 24206054
8.  Heme Oxygenase-1 Inhibits Myoblast Differentiation by Targeting Myomirs 
Antioxidants & Redox Signaling  2012;16(2):113-127.
Abstract
Aims
Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been suggested as a strategy improving survival of transplanted muscle precursors. Results: Here we demonstrated that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and DGCR8, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1 and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1+/+, HMOX1+/−, and HMOX1−/− mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic development is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhibition of c/EBPδ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. Innovation: We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing enzymes, and modulates the miRNA transcriptome. Conclusion: HMOX1 improves the survival of myoblasts, but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyperplastic growth of myogenic precursors. Antioxid. Redox Signal. 16, 113–127.
doi:10.1089/ars.2011.3964
PMCID: PMC3222100  PMID: 21827279
9.  Opposite effects of HIF-1α and HIF-2α on the regulation of IL-8 expression in endothelial cells 
Free Radical Biology & Medicine  2011;51(10):1882-1892.
Recently we have shown that hypoxia as well as overexpression of the stable form of hypoxia-inducible factor-1α (HIF-1α) diminished the expression of interleukin-8 (IL-8) by inhibition of the Nrf2 transcription factor in HMEC-1 cells. Because HIF isoforms may exert different effects, we aimed to examine the influence of HIF-2α on IL-8 expression in endothelial cells. In contrast to HIF-1α, overexpression of HIF-2α obtained by adenoviral transduction resulted in increased expression of IL-8 in an Nrf2-independent way. Importantly, HIF-2α augmented the activity of SP-1, a transcription factor involved in IL-8 regulation and known coactivator of c-Myc. Additionally, HIF-1 decreased, whereas HIF-2 increased, c-Myc expression, and silencing of Mxi-1, a c-Myc antagonist, restored IL-8 expression downregulated by HIF-1α or hypoxia. Accordingly, binding of c-Myc to the IL-8 promoter was abolished in hypoxia. Importantly, both severe (0.5% O2) and mild (5% O2) hypoxia diminished IL-8 expression despite the stabilization of both HIF-1 and HIF-2. This study reveals the opposite roles of HIF-1α and HIF-2α in the regulation of IL-8 expression in endothelial cells. However, despite stabilization of both isoforms in hypoxia the effect of HIF-1 is predominant, and downregulation of IL-8 expression in hypoxia is caused by attenuation of Nrf2 and c-Myc.
Graphical abstract
Highlights
► HIF-1 decreases whereas HIF-2 increases the expression of IL-8 in endothelial cells. ► SP-1 and c-Myc are involved in the HIF-2α-dependent IL-8 upregulation. ► Mxi-1, a c-Myc antagonist, mediates IL-8 diminishment by hypoxia/HIF-1α. ► Inhibition of Nrf2 activity by hypoxia/HIF-1α adds to the downregulation of IL-8. ► Both HIF isoforms are stabilized in hypoxia but the effect of HIF-1α is predominant.
doi:10.1016/j.freeradbiomed.2011.08.023
PMCID: PMC3202637  PMID: 21925595
AdHIF-1α/AdHIF-2α, adenoviral vectors containing HIF-1α or HIF-2α cDNA, respectively; ARE, antioxidant-response element; ARNT, aryl hydrocarbon receptor nuclear translocator; GFP, green fluorescent protein; HIF, hypoxia-inducible factor; HO-1, heme oxygenase-1; IL-8, interleukin-8; NQO1, NAD(P)H:quinone oxidoreductase; SEAP, secreted alkaline phosphatase; siRNA, small interfering RNA; TP, thymidine phosphorylase; VEGF, vascular endothelial growth factor; Angiogenesis; SP-1; c-Myc; Transcription factor; Free radicals
10.  Effects of heme oxygenase-1 on induction and development of chemically induced squamous cell carcinoma in mice 
Free Radical Biology & Medicine  2011;51(9):1717-1726.
Heme oxygenase-1 (HO-1) is an antioxidative and cytoprotective enzyme, which may protect neoplastic cells against anticancer therapies, thereby promoting the progression of growing tumors. Our aim was to investigate the role of HO-1 in cancer induction. Experiments were performed in HO-1+/+, HO-1+/−, and HO-1−/− mice subjected to chemical induction of squamous cell carcinoma with 7,12-dimethylbenz[a]anthracene and phorbol 12-myristate 13-acetate. Measurements of cytoprotective genes in the livers evidenced systemic oxidative stress in the mice of all the HO-1 genotypes. Carcinogen-induced lesions appeared earlier in HO-1−/− and HO-1+/− than in wild-type animals. They also contained much higher concentrations of vascular endothelial growth factor and keratinocyte chemoattractant, but lower levels of tumor necrosis factor-α and interleukin-12. Furthermore, tumors grew much larger in HO-1 knockouts than in the other groups, which was accompanied by an increased rate of animal mortality. However, pathomorphological analysis indicated that HO-1−/− lesions were mainly large but benign papillomas. In contrast, in mice expressing HO-1, most lesions displayed dysplastic features and developed to invasive carcinoma. Thus, HO-1 may protect healthy tissues against carcinogen-induced injury, but in already growing tumors it seems to favor their progression toward more malignant forms.
Highlights
► We investigate the role of HO-1 in development of squamous cell carcinoma in mice. ► HO-1 deficient mice are more vulnerable to the DMBA/PMA-induced skin injury. ► Lack of HO-1 results in the development of large, but benign papillomas. ► HO-1 expression facilitates transformation of growing tumors to malignant carcinoma. ► HO-1 expression promotes the c-myc mediated transformation of primary fibroblasts.
doi:10.1016/j.freeradbiomed.2011.07.025
PMCID: PMC3192260  PMID: 21867749
Heme oxygenase-1; Carcinogenesis; Squamous cell carcinoma; DMBA; Inflammation; Oxidative stress; Free radicals
11.  Aristolochic acid I and ochratoxin A differentially regulate VEGF expression in porcine kidney epithelial cells—The involvement of SP-1 and HIFs transcription factors 
Toxicology Letters  2011;204(2-3):118-126.
Highlights
► AAI increases whereas OTA decreases production of proangiogenic VEGF. ► The upregulation of VEGF expression by AAI is caused by induction of SP-1 and HIFs. ► Hypoxia prevents OTA-diminished VEGF production ► The effect of hypoxia on OTA-reduced VEGF is mediated by HIF-2α but not HIF-1α.
Aristolochic acid I (AAI) and ochratoxin A (OTA) cause chronic kidney diseases. Recently, the contribution of hypoxic injuries and angiogenic disturbances to nephropathies has been suggested, but underlying mechanisms have not been fully clarified yet.
In porcine kidney epithelial cell line, LLC-PK1 cells, treatment with non-toxic doses of AAI increased whereas with OTA decreased production of vascular endothelial growth factor (VEGF), the angiogenic factor with well-defined functions in kidney. Moreover, the activity of transcription factors regulating VEGF expression was differentially affected by examined compounds. Activity of hypoxia inducible factors (HIFs) and SP-1 was increased by AAI but diminished by OTA. Interestingly, AP-1 activity was inhibited while NFκB was not influenced by both toxins. Mithramycin A, a SP-1 inhibitor, as well as chetomin, an inhibitor of HIFs, reversed AAI-induced up-regulation of VEGF synthesis, indicating the importance of SP-1 and HIFs in this effect. Additionally, adenoviral overexpression of HIF-2α but not HIF-1α prevented OTA-diminished VEGF production suggesting the protective effect of this isoform towards the consequences exerted by OTA.
These observations provide new insight into complex impact of AAI and OTA on angiogenic gene regulation. Additionally, it adds to our understanding of hypoxia influence on nephropathies pathology.
doi:10.1016/j.toxlet.2011.04.022
PMCID: PMC3154282  PMID: 21554934
AA, aristolochic acid; AAI, aristolochic acid I; AAII, aristolochic acid II; AA-ATN, aristolochic acid-induced acute tubular necrosis; AAN, aristolochic acid-induced nephropathy; AdGFP, adenoviral vectors containing GFP cDNA; AdHIF-1,-2α, adenoviral vectors containing HIF-1,-2α cDNA; β-gal, β-galactosidase; BEN, Balkan endemic nephropathy; CKDs, chronic kidney diseases; EMT, epithelial to mesenchymal cell transformation; GFP, green fluorescent protein; HIF, hypoxia inducible factor; HRE, hypoxia responsive element; HRP, horseradish peroxidase; LDH, lactate dehydrogenase; LLC-PK1, porcine kidney epithelial cell line; IARC, The International Agency for Research on Cancer; OTA, ochratoxin A; ROS, reactive oxygen species; RT, room temperature; TGFβ, transforming growth factor β; VEGF, vascular endothelial growth factor; Nephropathy; Kidney diseases; Vascular endothelial growth factor; Angiogenesis; Hypoxia; LLC-PK1
12.  Role of heme oxygenase-1 in human endothelial cells – lesson from the promoter allelic variants 
Objective
Heme oxygenase-1 (HO-1) is an anti-oxidative, anti-inflammatory, and cytoprotective enzyme, which is induced in response to cellular stress. HO-1 promoter contains a (GT)n microsatellite DNA, and number of GT repeats can influence the occurrence of cardiovascular diseases. We elucidated the effect of this polymorphism on endothelial cells (HUVEC) isolated from newborns of different genotypes.
Methods and Results
On the basis of HO-1 expression we classified the HO-1 promoter alleles into three groups: S (most active, GT≤23), M (moderately active, GT=24-28), and L (least active, GT≥29). The presence of S allele led to the higher basal HO-1 expression and stronger induction in response to cobalt protoporphyrin, prostaglandin-J2, hydrogen peroxide, and lipopolysaccharide. Cells carrying S allele survived better under oxidative stress, a fact associated with the lower concentration of oxidized glutathione and more favourable oxidative status, as determined by measurement of the GSH:GSSG ratio. Moreover, they proliferated more efficiently in response to VEGF-A, although the VEGF-induced migration and sprouting of capillaries were not influenced. Finally, the presence of S allele was associated with lower production of some proinflammatory mediators, such as IL-1β, IL-6 and sICAM-1.
Conclusion
The (GT)n promoter polymorphism significantly modulates a cytoprotective, proangiogenic and anti-inflammatory function of HO-1 in human endothelium.
doi:10.1161/ATVBAHA.110.207316
PMCID: PMC2906705  PMID: 20508205
heme oxygenase-1; endothelium; genetic polymorphism; inflammation; oxidative stress; angiogenesis
13.  Combined vascular endothelial growth factor-A and fibroblast growth factor 4 gene transfer improves wound healing in diabetic mice 
Background
Impaired wound healing in diabetes is related to decreased production of growth factors. Hence, gene therapy is considered as promising treatment modality. So far, efforts concentrated on single gene therapy with particular emphasis on vascular endothelial growth factor-A (VEGF-A). However, as multiple proteins are involved in this process it is rational to test new approaches. Therefore, the aim of this study was to investigate whether single AAV vector-mediated simultaneous transfer of VEGF-A and fibroblast growth factor 4 (FGF4) coding sequences will improve the wound healing over the effect of VEGF-A in diabetic (db/db) mice.
Methods
Leptin receptor-deficient db/db mice were randomized to receive intradermal injections of PBS or AAVs carrying β-galactosidase gene (AAV-LacZ), VEGF-A (AAV-VEGF-A), FGF-4 (AAV-FGF4-IRES-GFP) or both therapeutic genes (AAV-FGF4-IRES-VEGF-A). Wound healing kinetics was analyzed until day 21 when all animals were sacrificed for biochemical and histological examination.
Results
Complete wound closure in animals treated with AAV-VEGF-A was achieved earlier (day 19) than in control mice or animals injected with AAV harboring FGF4 (both on day 21). However, the fastest healing was observed in mice injected with bicistronic AAV-FGF4-IRES-VEGF-A vector (day 17). This was paralleled by significantly increased granulation tissue formation, vascularity and dermal matrix deposition. Mechanistically, as shown in vitro, FGF4 stimulated matrix metalloproteinase-9 (MMP-9) and VEGF receptor-1 expression in mouse dermal fibroblasts and when delivered in combination with VEGF-A, enhanced their migration.
Conclusion
Combined gene transfer of VEGF-A and FGF4 can improve reparative processes in the wounded skin of diabetic mice better than single agent treatment.
doi:10.1186/1479-0556-8-6
PMCID: PMC2939607  PMID: 20804557
14.  Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice 
PLoS ONE  2009;4(6):e5803.
Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer.
doi:10.1371/journal.pone.0005803
PMCID: PMC2686151  PMID: 19495412

Results 1-14 (14)