Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  AXL kinase as a novel target for cancer therapy 
Oncotarget  2014;5(20):9546-9563.
The AXL receptor tyrosine kinase and its major ligand, GAS6 have been demonstrated to be overexpressed and activated in many human cancers (such as lung, breast, and pancreatic cancer) and have been correlated with poor prognosis, promotion of increased invasiveness/metastasis, the EMT phenotype and drug resistance. Targeting AXL in different model systems with specific small molecule kinase inhibitors or antibodies alone or in combination with other drugs can lead to inactivation of AXL-mediated signaling pathways and can lead to regained drug sensitivity and improved therapeutic efficacy, defining AXL as a promising novel target for cancer therapeutics. This review highlights the data supporting AXL as a novel treatment candidate in a variety of cancers as well as the current status of drug development targeting the AXL/GAS6 axis and future perspectives in this emerging field.
PMCID: PMC4259419  PMID: 25337673
AXL; receptor tyrosine kinase; lung cancer; targeted therapy
2.  New-onset headache in an elderly man with uremia that improved only after correction of hyperphosphatemia ("uremic headache"): a case report 
New-onset headaches in the elderly are usually secondary and rarely primary. We present the case of an elderly man with recent-onset headache due to uremic hyperphosphatemia and hypocalcemia. To the best of our knowledge, this is the first case report of its kind in the literature.
Case presentation
We present the case of a 70-year-old Indian man with chronic kidney disease whose new-onset headache improved only when his hyperphosphatemia and hypocalcemia were corrected. He had diffuse, dense calcification of tentorium cerebelli and falx due to hyperphosphatemia.
This case report reinforces the importance of identifying the cause of a new-onset headache, particularly in the elderly, and treating it before blaming a tension headache or primary headache as the cause.
PMCID: PMC3060137  PMID: 21349164
3.  Co-treatment with heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and vorinostat: a highly active combination against human Mantle Cell Lymphoma (MCL) cells 
Cancer biology & therapy  2009;8(13):1273-1280.
Heat shock protein (hsp) 90 inhibitors promote proteasomal degradation of pro-growth and pro-survival hsp90 client proteins, including CDK4, c-RAF and AKT, and induce apoptosis of human lymphoma cells. The pan-histone deacetylase inhibitor vorinostat has also been shown to induce growth arrest and apoptosis of lymphoma cells. Here, we determined the effects of the more soluble, orally bio-available, geldanamycin analogue 17-NN-dimethyl ethylenediamine geldanamycin (DMAG, Kosan Biosciences Inc) and/or vorinostat in cultured and primary human MCL cells. While vorinostat induced accumulation in the G1 phase, treatment with DMAG arrested MCL cells in the G2/M phase of the cell cycle. Both agents dose-dependently induced apoptosis of MCL cells. Vorinostat also induced hyperacetylation of hsp90 and disrupted the association of hsp90 with its co-chaperones p23 and cdc37, as well as with its client proteins CDK4 and c-RAF. Treatment of MCL cells with vorinostat or 17-DMAG was associated with the induction of p21 and p27, as well as with depletion of c-Myc, c-RAF, AKT and CDK4. Compared to treatment with either agent alone, co-treatment with DMAG and vorinostat markedly attenuated the levels of cyclin D1 and CDK4, as well as of c-Myc, c-RAF and AKT. Combined treatment with DMAG and vorinostat synergistically induced apoptosis of the cultured MCL cells, as well as induced more apoptosis of primary MCL cells than either agent alone. Therefore, these findings support the rationale to determine the in vivo efficacy of co-treatment with vorinostat and DMAG against human MCL cells.
PMCID: PMC2766923  PMID: 19440035
4.  Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells 
Cancer biology & therapy  2009;8(10):939-950.
The PRC2 complex protein EZH2 is a histone methyltransferase that is known to bind and recruit DNMT1 to the DNA to modulate DNA methylation. Here, we determined that the pan-HDAC inhibitor panobinostat (LBH589) treatment depletes DNMT1 and EZH2 protein levels, disrupts the interaction of DNMT1 with EZH2, as well as de-represses JunB in human acute leukemia cells. Similar to treatment with the hsp90 inhibitor 17-DMAG, treatment with panobinostat also inhibited the chaperone association of heat shock protein 90 with DNMT1 and EZH2, which promoted the proteasomal degradation of DNMT1 and EZH2. Unlike treatment with the DNA methyltransferase inhibitor decitabine, which demethylates JunB promoter DNA, panobinostat treatment mediated chromatin alterations in the JunB promoter. Combined treatment with panobinostat and decitabine caused greater attenuation of DNMT1 and EZH2 levels than either agent alone, which was accompanied by more JunB de-repression and loss of clonogenic survival of K562 cells. Co-treatment with panobinostat and decitabine also caused more loss of viability of primary AML but not normal CD34+ bone marrow progenitor cells. Collectively, these findings indicate that co-treatment with panobinostat and decitabine targets multiple epigenetic mechanisms to de-repress JunB and exerts antileukemia activity against human acute myeloid leukemia cells.
PMCID: PMC2775142  PMID: 19279403
5.  Role of promoter hypermethylation in Cisplatin treatment response of male germ cell tumors 
Molecular Cancer  2004;3:16.
Male germ cell tumor (GCT) is a highly curable malignancy, which exhibits exquisite sensitivity to cisplatin treatment. The genetic pathway(s) that determine the chemotherapy sensitivity in GCT remain largely unknown.
We studied epigenetic changes in relation to cisplatin response by examining promoter hypermethylation in a cohort of resistant and sensitive GCTs. Here, we show that promoter hypermethylation of RASSF1A and HIC1 genes is associated with resistance. The promoter hypermethylation and/or the down-regulated expression of MGMT is seen in the majority of tumors. We hypothesize that these epigenetic alterations affecting MGMT play a major role in the exquisite sensitivity to cisplatin, characteristic of GCTs. We also demonstrate that cisplatin treatment induce de novo promoter hypermethylation in vivo. In addition, we show that the acquired cisplatin resistance in vitro alters the expression of specific genes and the highly resistant cells fail to reactivate gene expression after treatment to demethylating and histone deacetylase inhibiting agents.
Our findings suggest that promoter hypermethylation of RASSF1A and HIC1 genes play a role in resistance of GCT, while the transcriptional inactivation of MGMT by epigenetic alterations confer exquisite sensitivity to cisplatin. These results also implicate defects in epigenetic pathways that regulate gene transcription in cisplatin resistant GCT.
PMCID: PMC420487  PMID: 15149548
6.  Frequent Promoter Methylation of CDH1, DAPK, RARB, and HIC1 Genes in Carcinoma of Cervix Uteri: Its Relationship to Clinical Outcome 
Molecular Cancer  2003;2:24.
Cervical cancer (CC), a leading cause of cancer-related deaths in women worldwide, has been causally linked to genital human papillomavirus (HPV) infection. Although a host of genetic alterations have been identified, molecular basis of CC development is still poorly understood.
We examined the role of promoter hypermethylation, an epigenetic alteration that is associated with the silencing tumor suppressor genes in human cancer, by studying 16 gene promoters in 90 CC cases. We found a high frequency of promoter methylation in CDH1, DAPK, RARB, and HIC1 genes. Correlation of promoter methylation with clinical characteristics and other genetic changes revealed the following: a) overall promoter methylation was higher in more advanced stage of the disease, b) promoter methylation of RARB and BRCA1 predicted worse prognosis, and c) the HIC1 promoter methylation was frequently seen in association with microsatellite instability. Promoter methylation was associated with gene silencing in CC cell lines. Treatment with methylation or histone deacetylation-inhibiting agents resulted in profound reactivation of gene expression.
These results may have implications in understanding the underlying epigenetic mechanisms in CC development, provide prognostic indicators, and identify important gene targets for treatment.
PMCID: PMC156646  PMID: 12773202
cervical carcinoma; promoter hypermethylation; CDH1; DAPK; RARB; tumor suppressor gene; gene expression
7.  Characteristic promoter hypermethylation signatures in male germ cell tumors 
Molecular Cancer  2002;1:8.
Human male germ cell tumors (GCTs) arise from undifferentiated primordial germ cells (PGCs), a stage in which extensive methylation reprogramming occurs. GCTs exhibit pluripotentality and are highly sensitive to cisplatin therapy. The molecular basis of germ cell (GC) transformation, differentiation, and exquisite treatment response is poorly understood.
To assess the role and mechanism of promoter hypermethylation, we analyzed CpG islands of 21 gene promoters by methylation-specific PCR in seminomatous (SGCT) and nonseminomatous (NSGCT) GCTs. We found 60% of the NSGCTs demonstrating methylation in one or more gene promoters whereas SGCTs showed a near-absence of methylation, therefore identifying distinct methylation patterns in the two major histologies of GCT. DNA repair genes MGMT, RASSF1A, and BRCA1, and a transcriptional repressor gene HIC1, were frequently methylated in the NSGCTs. The promoter hypermethylation was associated with gene silencing in most methylated genes, and reactivation of gene expression occured upon treatment with 5-Aza-2' deoxycytidine in GCT cell lines.
Our results, therefore, suggest a potential role for epigenetic modification of critical tumor suppressor genes in pathways relevant to GC transformation, differentiation, and treatment response.
PMCID: PMC149411  PMID: 12495446
Germ cell tumor; promoter hypermethylation; MGMT; RASSF1A; BRCA1; gene expression

Results 1-7 (7)