PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  CORTICOSTRIATAL PLASTICITY IS NECESSARY FOR LEARNING INTENTIONAL NEUROPROSTHETIC SKILLS 
Nature  2012;483(7389):331-335.
The ability to learn new skills and perfect them with practice applies not only to physical skills but also to abstract skills1, like motor planning or neuroprosthetic actions. Although plasticity in corticostriatal circuits has been implicated in learning physical skills2–4, it remains unclear if similar circuits or processes are required for abstract skill learning. We utilized a novel behavioral paradigm in rodents to investigate the role of corticostriatal plasticity in abstract skill learning. Rodents learned to control the pitch of an auditory cursor to reach one of two targets by modulating activity in primary motor cortex irrespective of physical movement. Degradation of the relation between action and outcome, as well as sensory-specific devaluation and omission tests, demonstrated that these learned neuroprosthetic actions were intentional and goal-directed, rather than habitual. Striatal neurons changed their activity with learning, with more neurons modulating their activity in relation to target-reaching as learning progressed. Concomitantly, strong relations between the activity of neurons in motor cortex and the striatum emerged. Specific deletion of striatal NMDA receptors impaired the development of this corticostriatal plasticity, and disrupted the ability to learn neuroprosthetic skills. These results suggest that corticostriatal plasticity is necessary for abstract skill learning, and that neuroprosthetic movements capitalize on the neural circuitry involved in natural motor learning.
doi:10.1038/nature10845
PMCID: PMC3477868  PMID: 22388818

Results 1-1 (1)