PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Evaluation of the correlation between insertion torque and primary stability of dental implants using a block bone test 
Purpose
Implant stability at the time of surgery is crucial for the long-term success of dental implants. Primary stability is considered of paramount importance to achieve osseointegration. The purpose of the present study was to investigate the correlation between the insertion torque and primary stability of dental implants using artificial bone blocks with different bone densities and compositions to mimic different circumstances that are encountered in routine daily clinical settings.
Methods
In order to validate the objectives, various sized holes were made in bone blocks with different bone densities (#10, #20, #30, #40, and #50) using a surgical drill and insertion torque together with implant stability quotient (ISQ) values that were measured using the Osstell Mentor. The experimental groups under evaluation were subdivided into 5 subgroups according to the circumstances.
Results
In group 1, the mean insertion torque and ISQ values increased as the density of the bone blocks increased. For group 2, the mean insertion torque values decreased as the final drill size expanded, but this was not the case for the ISQ values. The mean insertion torque values in group 3 increased with the thickness of the cortical bone, and the same was true for the ISQ values. For group 4, the mean insertion torque values increased as the cancellous bone density increased, but the correlation with the ISQ values was weak. Finally, in group 5, the mean insertion torque decreased as the final drill size increased, but the correlation with the ISQ value was weak.
Conclusions
Within the limitations of the study, it was concluded that primary stability does not simply depend on the insertion torque, but also on the bone quality.
doi:10.5051/jpis.2013.43.1.30
PMCID: PMC3596632  PMID: 23508040
Bone density; Dental implants; Torque
2.  Effect of microthreads on removal torque and bone-to-implant contact: an experimental study in miniature pigs 
Purpose
The objective of this study was to evaluate the effect of microthreads on removal torque and bone-to-implant contact (BIC).
Methods
Twelve miniature pigs for each experiment, a total of 24 animals, were used. In the removal torque analysis, each animal received 2 types of implants in each tibia, which were treated with sandblasting and acid etching but with or without microthreads at the marginal portion. The animals were sacrificed after 4, 8, or 12 weeks of healing. Each subgroup consisted of 4 animals, and the tibias were extracted and removal torque was measured. In the BIC analysis, each animal received 3 types of implants. Two types of implants were used for the removal torque test and another type of implant served as the control. The BIC experiment was conducted in the mandible of the animals. The P1-M1 teeth were extracted, and after a 4-month healing period, 3 each of the 2 types of implants were placed, with one type on each side of the mandible, for a total of 6 implants per animal. The animals were sacrificed after a 2-, 4-, or 8-week healing period. Each subgroup consisted of 4 animals. The mandibles were extracted, specimens were processed, and BIC was analyzed.
Results
No significant difference in removal torque value or BIC was found between implants with and without microthreads. The removal torque value increased between 4 and 8 weeks of healing for both types of implants, but there was no significant difference between 8 and 12 weeks. The percentage of BIC increased between 2 and 4 weeks for all types of implants, but there was no significant difference between 4 and 8 weeks.
Conclusions
The existence of microthreads was not a significant factor in mechanical and histological stability.
doi:10.5051/jpis.2013.43.1.41
PMCID: PMC3596634  PMID: 23508085
Biomechanics; Dental implants; Osseointegration; Torque
3.  Dual Delivery of rhPDGF-BB and Bone Marrow Mesenchymal Stromal Cells Expressing the BMP2 Gene Enhance Bone Formation in a Critical-Sized Defect Model 
Tissue Engineering. Part A  2013;19(21-22):2495-2505.
Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.
doi:10.1089/ten.tea.2012.0648
PMCID: PMC3807533  PMID: 23901900
4.  Effects of immunosuppressants, FK506 and cyclosporin A, on the osteogenic differentiation of rat mesenchymal stem cells 
Purpose
The purpose of this study was to investigate the effects of the immunosuppressants FK506 and cyclosporin A (CsA) on the osteogenic differentiation of rat mesenchymal stem cells (MSCs).
Methods
The effect of FK506 and CsA on rat MSCs was assessed in vitro. The MTT assay was used to determine the deleterious effect of immunosuppressants on stem cell proliferation at 1, 3, and 7 days. Alkaline phosphatase (ALP) activity was analyzed on days 3, 7, and 14. Alizarin red S staining was done on day 21 to check mineralization nodule formation. Real-time polymerase chain reaction (RT-PCR) was also performed to detect the expressions of bone tissue-specific genes on days 1 and 7.
Results
Cell proliferation was promoted more in the FK506 groups than the control or CsA groups on days 3 and 7. The FK506 groups showed increased ALP activity compared to the other groups during the experimental period. The ALP activity of the CsA groups did not differ from the control group in any of the assessments. Mineralization nodule formation was most prominent in the FK506 groups at 21 days. RT-PCR results of the FK506 groups showed that several bone-related genes-osteopontin, osteonectin, and type I collagen (Col-I)-were expressed more than the control in the beginning, but the intensity of expression decreased over time. Runx2 and Dlx5 gene expression were up-regulated on day 7. The effects of 50 nM CsA on osteonectin and Col-I were similar to those of the FK506 groups, but in the 500 nM CsA group, most of the genes were less expressed compared to the control.
Conclusions
These results suggest that FK506 enhances the osteoblastic differentiation of rat MSCs. Therefore, FK506 might have a beneficial effect on bone regeneration when immunosuppressants are needed in xenogenic or allogenic stem cell transplantation to treat bone defects.
doi:10.5051/jpis.2012.42.3.73
PMCID: PMC3394998  PMID: 22803008
Cell differentiation; Cyclosporin A; FK506; Immunosuppressive agents; Mesenchymal stem cells
5.  The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects 
Purpose
Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement.
Methods
Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed.
Results
New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted r2=0.907, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001).
Conclusions
Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.
doi:10.5051/jpis.2011.41.5.218
PMCID: PMC3213232  PMID: 22087412
Bone morphogenic protein-2; Gene therapy; Histology; X-Ray microtomography
6.  Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2 
Purpose
The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2.
Methods
MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days.
Results
At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7.
Conclusions
The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.
doi:10.5051/jpis.2011.41.5.227
PMCID: PMC3213233  PMID: 22087413
Bone morphogenetic protein-2; Cell differentiation; Cell proliferation; Zirconium oxide
7.  Initial adhesion of bone marrow stromal cells to various bone graft substitutes 
Purpose
The aim of this study is to determine whether certain biomaterials have the potential to support cell attachment. After seeding bone marrow stromal cells onto the biomaterials, we investigated their responses to each material in vitro.
Methods
Rat bone marrow derived stromal cells were used. The biomaterials were deproteinized bovine bone mineral (DBBM), DBBM coated with fibronectin (FN), synthetic hydroxyapatite (HA), HA coated with FN, HA coated with β-tricalcium phosphate (TCP), and pure β-TCP. With confocal laser scanning microscopy, actin filaments and vinculin were observed after 6, 12, and 24 hours of cell seeding. The morphological features of cells on each biomaterial were observed using scanning electron microscopy at day 1 and 7.
Results
The cells on HA/FN and HA spread widely and showed better defined actin cytoskeletons than those on the other biomaterials. At the initial phase, FN seemed to have a favorable effect on cell adhesion. In DBBM, very few cells adhered to the surface.
Conclusions
Within the limitations of this study, we can conclude that in contrast with DBBM not supporting cell attachment, HA provided a more favorable environment with respect to cell attachment.
doi:10.5051/jpis.2011.41.2.67
PMCID: PMC3087077  PMID: 21556256
Bone substitutes; Cell adhesion; Fibronectins; Stem cells
8.  Immunomodulatory effect of canine periodontal ligament stem cells on allogenic and xenogenic peripheral blood mononuclear cells 
Purpose
The aim of this study was to investigate the immunomodulatory effects of canine periodontal ligament stem cells on allogenic and xenogenic immune cells in vitro.
Methods
Mixed cell cultures consisting of canine stem cells (periodontal ligament stem cells and bone marrow stem cells) and allogenic canine/xenogenic human peripheral blood mononuclear cells (PBMCs) were established following the addition of phytohemagglutinin. The proliferation of PBMCs was evaluated using the MTS assay. The cell division of PBMCs was analyzed using the CFSE assay. The apoptosis of PBMCs was assessed using the trypan blue uptake method.
Results
Periodontal ligament stem cells and bone marrow stem cells inhibited the proliferation of allogenic and xenogenic PBMCs. Both periodontal ligament stem cells and bone marrow stem cells suppressed the cell division of PBMCs despite the existence of a mitogen. No significant differences in the percentages of apoptotic PBMCs were found among the groups.
Conclusions
Canine periodontal ligament stem cells have an immunomodulatory effect on allogenic and xenogenic PBMCs. This effect is not a product of apoptosis of PBMCs but is caused by the inhibition of cell division of PBMCs.
doi:10.5051/jpis.2010.40.6.265
PMCID: PMC3021166  PMID: 21246016
Allogenic; Immunomodulation; Periodontal ligaments; Stem cell; Xenogenic
9.  Socket preservation using deproteinized horse-derived bone mineral 
Purpose
The healing process following tooth extraction apparently results in a pronounced resorption of the alveolar ridge. As a result, the width of alveolar ridge is reduced and severe alveolar bone resorption occurs. The purpose of this experiment is to clinically and histologically evaluate the results of using horse-derived bone mineral for socket preservation.
Methods
The study comprised 4 patients who were scheduled for extraction as a consequence of severe chronic periodontitis or apical lesion. The extraction was followed by socket preservation using horse-derived bone minerals. Clinical parameters included buccal-palatal width, mid-buccal crest height, and mid-palatal crest height. A histologic examination was conducted.
Results
The surgical sites healed uneventfully. The mean ridge width was 7.75 ± 2.75 mm at baseline and 7.00 ± 2.45 mm at 6 months. The ridge width exhibited no significant difference between baseline and 6 months. The mean buccal crest height at baseline was 7.5 ± 5.20 mm, and at 6 months, 3.50 ± 0.58 mm. The mean palatal crest height at baseline was 7.75 ± 3.10 mm, and at 6 months, 5.00 ± 0.82 mm. There were no significant differences between baseline and 6 months regarding buccal and palatal crest heights. The amount of newly formed bone was 9.88 ± 2.90%, the amount of graft particles was 42.62 ± 6.57%, and the amount of soft tissue was 47.50 ± 9.28%.
Conclusions
Socket preservation using horse-derived bone mineral can effectively maintain ridge dimensions following tooth extraction and can promote new bone formation through osteoconductive activities.
doi:10.5051/jpis.2010.40.5.227
PMCID: PMC2967810  PMID: 21072219
Bone resorption; Bone substitutes; Clinical trial; Tooth socket
10.  Biological effects of a porcine-derived collagen membrane on intrabony defects 
Purpose
To prolong the degradation time of collagen membranes, various cross-linking techniques have been developed. For cross-linking, chemicals such as formaldehyde and glutaraldehyde are added to collagen membranes, but these chemicals could adversely affect surrounding tissues. The aim of this study is to evaluate the ability of porous non-chemical cross-linking porcine-derived collagen nanofibrous membrane to enhance bone and associated tissue regeneration in one-wall intrabony defects in beagle dogs.
Methods
The second and third mandibular premolars and the first molars of 2 adult beagles were extracted bilaterally and the extraction sites were allowed to heal for 10 weeks. One-wall intrabony defects were prepared bilaterally on the mesial and distal side of the fourth mandibular premolars. Among eight defects, four defects were not covered with membrane as controls and the other four defects were covered with membrane as the experimental group. The animals were sacrificed 10 weeks after surgery.
Results
Wound healing was generally uneventful. For all parameters evaluating bone regeneration, the experimental group showed significantly superior results compared to the control. In new bone height (NBh), the experimental group exhibited a greater mean value than the control (3.04 ± 0.23 mm/1.57 ± 0.59, P = 0.003). Also, in new bone area (NBa) and new bone volume (NBv), the experimental group showed superior results compared to the control (NBa, 34.48 ± 10.21% vs. 5.09 ± 5.76%, P = 0.014; and NBv, 28.04 ± 12.96 vs. 1.55 ± 0.57, P = 0.041). On the other hand, for parameters evaluating periodontal tissue regeneration, including junctional epithelium migration and new cementum height, there were no statistically significant differences between two groups.
Conclusions
Within the limitations of this study, this collagen membrane enhanced bone regeneration at one-wall intrabony defects. On the other hand, no influence of this membrane on periodontal tissue regeneration could be ascertained in this study.
doi:10.5051/jpis.2010.40.5.232
PMCID: PMC2967811  PMID: 21072220
Absorbable implants; Bone regeneration; Collagen; Guided tissue regeneration
11.  Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts 
Purpose
It has been reported that low-level semiconductor diode lasers could enhance the wound healing process. The periodontal ligament is crucial for maintaining the tooth and surrounding tissues in periodontal wound healing. While low-level semiconductor diode lasers have been used in low-level laser therapy, there have been few reports on their effects on periodontal ligament fibroblasts (PDLFs). We performed this study to investigate the biological effects of semiconductor diode lasers on human PDLFs.
Methods
Human PDLFs were cultured and irradiated with a gallium-aluminum-arsenate (GaAlAs) semiconductor diode laser of which the wavelength was 810 nm. The power output was fixed at 500 mW in the continuous wave mode with various energy fluencies, which were 1.97, 3.94, and 5.91 J/cm2. A culture of PDLFs without laser irradiation was regarded as a control. Then, cells were additionally incubated in 72 hours for MTS assay and an alkaline phosphatase (ALPase) activity test. At 48 hours post-laser irradiation, western blot analysis was performed to determine extracellular signal-regulated kinase (ERK) activity. ANOVA was used to assess the significance level of the differences among groups (P<0.05).
Results
At all energy fluencies of laser irradiation, PDLFs proliferation gradually increased for 72 hours without any significant differences compared with the control over the entire period taken together. However, an increment of cell proliferation significantly greater than in the control occurred between 24 and 48 hours at laser irradiation settings of 1.97 and 3.94 J/cm2 (P<0.05). The highest ALPase activity was found at 48 and 72 hours post-laser irradiation with 3.94 J/cm2 energy fluency (P<0.05). The phosphorylated ERK level was more prominent at 3.94 J/cm2 energy fluency than in the control.
Conclusions
The present study demonstrated that the GaAlAs semiconductor diode laser promoted proliferation and differentiation of human PDLFs.
doi:10.5051/jpis.2010.40.3.105
PMCID: PMC2895515  PMID: 20607054
Alkaline phosphatase; Extracellular signal-regulated kinases; Fibroblasts; Periodontal ligament; Semiconductor diode lasers
12.  Bone regeneration effects of human allogenous bone substitutes: a preliminary study 
Purpose
The purpose of this study was to compare the bone regeneration effects of cortical, cancellous, and cortico-cancellous human bone substitutes on calvarial defects of rabbits.
Methods
Four 8-mm diameter calvarial defects were created in each of nine New Zealand white rabbits. Freeze-dried cortical bone, freeze-dried cortico-cancellous bone, and demineralized bone matrix with freeze-dried cancellous bone were inserted into the defects, while the non-grafted defect was regarded as the control. After 4, 8, and 12 weeks of healing, the experimental animals were euthanized for specimen preparation. Micro-computed tomography (micro-CT) was performed to calculate the percent bone volume. After histological evaluation, histomorphometric analysis was performed to quantify new bone formation.
Results
In micro-CT evaluation, freeze-dried cortico-cancellous human bone showed the highest percent bone volume value among the experimental groups at week 4. At week 8 and week 12, freeze-dried cortical human bone showed the highest percent bone volume value among the experimental groups. In histologic evaluation, at week 4, freeze-dried cortico-cancellous human bone showed more prominent osteoid tissue than any other group. New bone formation was increased in all of the experimental groups at week 8 and 12. Histomorphometric data showed that freeze-dried cortico-cancellous human bone showed a significantly higher new bone formation percentile value than any other experimental group at week 4. At week 8, freeze-dried cortical human bone showed the highest value, of which a significant difference existed between freeze-dried cortical human bone and demineralized bone matrix with freeze-dried cancellous human bone. At week 12, there were no significant differences among the experimental groups.
Conclusions
Freeze-dried cortico-cancellous human bone showed swift new bone formation at the 4-week healing phase, whereas there was less difference in new bone formation among the experimental groups in the following healing phases.
doi:10.5051/jpis.2010.40.3.132
PMCID: PMC2895519  PMID: 20607058
Bone Substitutes; Osteogenesis; Transplantation; X-Ray Microtomography

Results 1-12 (12)