Search tips
Search criteria

Results 1-25 (98)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Correction: Expression of Streptococcus pneumoniae Virulence-Related Genes in the Nasopharynx of Healthy Children 
PLoS ONE  2014;9(1):10.1371/annotation/d0f4e484-1381-42c2-8dbf-015d66a4fdc5.
PMCID: PMC3888487
2.  Population Snapshot of Streptococcus pneumoniae Causing Invasive Disease in South Africa Prior to Introduction of Pneumococcal Conjugate Vaccines 
PLoS ONE  2014;9(9):e107666.
We determined the sequence types of isolates that caused invasive pneumococcal disease (IPD) prior to routine use of pneumococcal conjugate vaccines (PCV) in South Africa. PCV-13 serotypes and 6C isolates collected in 2007 (1 461/2 437, 60%) from patients of all ages as part of on-going, national, laboratory-based surveillance for IPD, were selected for genetic characterization. In addition, all 134 non-PCV isolates from children <2 years were selected for characterization. Sequence type diversity by serotype and age category (children <5 years vs. individuals ≥5 years) was assessed for PCV serotypes using Simpson’s index of diversity. Similar genotypes circulated among isolates from children and adults and the majority of serotypes were heterogeneous. While globally disseminated clones were common among some serotypes (e.g., serotype 1 [clonal complex (CC) 217, 98% of all serotype 1] and 14 [CC230, 43%)]), some were represented mainly by clonal complexes rarely reported elsewhere (e.g., serotype 3 [CC458, 60%] and 19A [CC2062, 83%]). In children <2 years, serotype 15B and 8 were the most common serotypes among non-PCV isolates (16% [22/134] and 15% [20/134] isolates, respectively). Sequence type 7052 and 53 were most common among serotypes 15B and 8 isolates and accounted for 58% (7/12) and 64% (9/14) of the isolates, respectively. Serotype 19F, 14, 19A and 15B had the highest proportions of penicillin non-susceptible isolates. Genotypes rarely reported in other parts of the world but common among some of our serotypes highlight the importance of our data as these genotypes may emerge post PCV introduction.
PMCID: PMC4169438  PMID: 25233455
3.  Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data 
PLoS Medicine  2015;12(1):e1001776.
Daniel Weinberger and colleagues examine a possible interaction between two serious respiratory infections in children under 2 years of age.
Please see later in the article for the Editors' Summary
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Editors' Summary
Respiratory infections—bacterial and viral infections of the lungs and the airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for about 15% of all child deaths. The leading cause of bacterial pneumonia in children is Streptococcus pneumoniae, which is transmitted through contact with infected respiratory secretions. S. pneumoniae usually causes noninvasive diseases such as bronchitis, but sometimes the bacteria invade the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, or meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination with pneumococcal conjugate vaccines such as PCV7. The leading cause of viral pneumonia is respiratory syncytial virus (RSV), which is also readily transmitted through contact with infected respiratory secretions. Almost all children have an RSV infection before their second birthday—RSV usually causes a mild cold-like illness. However, some children infected with RSV develop pneumonia and have to be admitted to hospital for supportive care such as the provision of supplemental oxygen; there is no specific treatment for RSV infection.
Why Was This Study Done?
Co-infections with bacteria and viruses can sometimes have a synergistic effect and lead to more severe disease than an infection with either type of pathogen (disease-causing organism) alone. For example, influenza infections increase the risk of invasive pneumococcal disease. But does pneumococcal disease also interact with RSV infection? It is important to understand the interaction between pneumococcal disease and RSV to improve the treatment of respiratory infections in young children, but the importance of bacterial infections following RSV infection is currently unclear. Here, the researchers undertake a time series analysis of US hospitalization data to investigate the association between RSV activity and pneumococcal disease in infants. Time series analysis uses statistical methods to analyze data collected at successive, evenly spaced time points.
What Did the Researchers Do and Find?
For their analysis, the researchers used data collected between 1992/1993 and 2008/2009 by the State Inpatient Databases on more than 700,000 hospitalizations for RSV and more than 16,000 hospitalizations for pneumococcal pneumonia or septicemia among children under two years old in 36 US states. Using a statistical technique called harmonic regression to measure seasonal variations in disease incidence (the rate of occurrence of new cases of a disease), the researchers show that RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern over the study period. Next, using Poisson regression models (another type of statistical analysis), they show that RSV was associated with significant increases (increases unlikely to have happened by chance) in the incidence of pneumococcal disease. Among children under one year old, 20.3% of pneumococcal pneumonia cases were associated with RSV activity; among children 1–2 years old, 10.1% of pneumococcal pneumonia cases were associated with RSV activity. Finally, the researchers report that following the introduction of routine vaccination in the US against S. pneumoniae with PCV7 in 2000, there was a significant decline in hospitalizations for RSV among children under one year old.
What Do These Findings Mean?
These findings provide evidence for an interaction between RSV and pneumococcal pneumonia and indicate that RSV is associated with increases in the incidence of pneumococcal pneumonia, particularly in young infants. Notably, the finding that RSV hospitalizations declined after the introduction of routine pneumococcal vaccination suggests that some RSV hospitalizations may have a joint viral–bacterial etiology (cause), although it is possible that PCV7 vaccination reduced the diagnosis of RSV because fewer children were hospitalized with pneumococcal disease and subsequently tested for RSV. Because this is an ecological study (an observational investigation that looks at risk factors and outcomes in temporally and geographically defined populations), these findings do not provide evidence for a causal link between hospitalizations for RSV and pneumococcal pneumonia. The similar spatiotemporal patterns for the two infections might reflect another unknown factor shared by the children who were hospitalized for RSV or pneumococcal pneumonia. Moreover, because pooled hospitalization discharge data were used in this study, these results need to be confirmed through analysis of individual-level, laboratory-confirmed data. Importantly, however, these findings support the initiation of studies to determine whether treatment for bacterial infections should be considered for children with pneumonia even if they have tested positive for RSV.
Additional Information
Please access these websites via the online version of this summary at
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about pneumonia
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories and information about RSV infection
The UK National Health Service Choices website provides information about pneumonia (including a personal story) and about pneumococcal diseases
KidsHealth, a website provided by the US-based non-profit Nemours Foundation, includes information on pneumonia and on RSV (in English and Spanish)
MedlinePlus provides links to other resources about pneumonia, RSV infections, and pneumococcal infections (in English and Spanish)
HCUPnet provides aggregated hospitalization data from the State Inpatient Databases used in this study
PMCID: PMC4285401  PMID: 25562317
4.  Global practices of meningococcal vaccine use and impact on invasive disease 
Pathogens and Global Health  2014;108(1):11-20.
A number of countries now include meningococcal vaccines in their routine immunization programs. This review focuses on different approaches to including meningococcal vaccines in country programs across the world and their effect on the burden of invasive meningococcal disease (IMD) as reflected by pre and post-vaccine incidence rates in the last 20 years. Mass campaigns using conjugated meningococcal vaccines have lead to control of serogroup C meningococcal disease in the UK, Canada, Australia, Spain, Belgium, Ireland, and Iceland. Serogroup B disease, predominant in New Zealand, has been dramatically decreased, partly due to the introduction of an outer membrane vesicle (OMV) vaccine. Polysaccharide vaccines were used in high risk people in Saudi Arabia and Syria and in routine immunization in China and Egypt. The highest incidence region of the meningitis belt initiated vaccination with the serogroup A conjugate vaccine in 2010 and catch-up vaccination is ongoing. Overall results of this vaccine introduction are encouraging especially in countries with a moderate to high level of endemic disease. Continued surveillance is required to monitor effectiveness in countries that recently implemented these programs.
PMCID: PMC4083163  PMID: 24548156
Invasive meningococcal disease; Epidemiology; Vaccines; Immunization schedule; Meningococcemia; Serogroup; Global; Immunity; Meningococcus; Meningitis
5.  The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition 
Microbiome  2014;2:44.
Several cohort studies have indicated associations between S. pneumoniae and other microbes in the nasopharynx. To study causal relationships between the nasopharyngeal microbiome and pneumococcal carriage, we employed an experimental human pneumococcal carriage model. Healthy adult volunteers were assessed for pneumococcal carriage by culture of nasal wash samples (NWS). Those without natural pneumococcal carriage received an intranasal pneumococcal inoculation with serotype 6B or 23F. The composition of the nasopharyngeal microbiome was longitudinally studied by 16S rDNA pyrosequencing on NWS collected before and after challenge.
Among 40 selected volunteers, 10 were natural carriers and 30 were experimentally challenged. At baseline, five distinct nasopharyngeal microbiome profiles were identified. The phylogenetic distance between microbiomes of natural pneumococcal carriers was particularly large compared to non-carriers. A more diverse microbiome prior to inoculation was associated with the establishment of pneumococcal carriage. Perturbation of microbiome diversity upon pneumococcal challenge was strain specific. Shifts in microbiome profile occurred after pneumococcal exposure, and those volunteers who acquired carriage more often diverted from their original profile. S. pneumoniae was little prominent in the microbiome of pneumococcal carriers.
Pneumococcal acquisition in healthy adults is more likely to occur in a diverse microbiome and appears to promote microbial heterogeneity.
Electronic supplementary material
The online version of this article (doi:10.1186/2049-2618-2-44) contains supplementary material, which is available to authorized users.
PMCID: PMC4323220  PMID: 25671106
Experimental human model; Microbiome; Nasopharyngeal carriage; Streptococcus pneumoniae
6.  Factors Associated with Ceftriaxone Nonsusceptibility of Streptococcus pneumoniae: Analysis of South African National Surveillance Data, 2003 to 2010 
It is important to monitor β-lactam antimicrobial nonsusceptibility trends for Streptococcus pneumoniae to inform empirical treatment guidelines. In this study, we describe penicillin and ceftriaxone susceptibility trends using national laboratory-based pneumococcal surveillance data from 2003 to 2010. A sentinel enhanced-site patient subset (2009 to 2010) contributed to the risk factor and mortality analyses. We included 9,218 invasive pneumococcal disease (IPD) cases for trend analyses and 2,854 IPD cases for risk factor and mortality analyses. Overall, we detected no significant changes in penicillin (patients <5 years of age, P = 0.50; patients ≥5 years of age, P = 0.05) or ceftriaxone nonsusceptibility rates (patients <5 years of age, P = 0.21; patients ≥5 years of age, P = 0.60). Factors associated with ceftriaxone nonsusceptibility on multivariate analysis were an age of <5 years (<1 year of age: adjusted odds ratio [aOR], 2.87; 95% confidence interval [CI], 1.70 to 4.86; 1 to 4 years of age: aOR, 2.58; 95% CI, 1.53 to 4.35, versus 25 to 44 years of age), province (Gauteng [aOR, 2.46; 95% CI, 1.26 to 4.84], and Northern Cape [aOR, 4.52; 95% CI, 1.95 to 10.52] versus KwaZulu-Natal), β-lactam use within 24 h preceding admission (aOR, 2.52; 95% CI, 1.41 to 4.53), and 13-valent vaccine serotypes (aOR, 51.64; 95% CI, 7.18 to 371.71). Among patients ≥5 years of age with meningitis who were treated according to current guidelines, HIV-infected patients (aOR, 2.94; 95% CI, 1.32 to 6.54) and patients infected with ceftriaxone-nonsusceptible isolates (aOR, 3.17; 95% CI, 1.27 to 7.89) had increased mortality rates. Among children <5 years of age with meningitis, mortality was increased in HIV-infected patients (aOR, 3.04; 95% CI, 1.40 to 6.56) but not in those with ceftriaxone-nonsusceptible isolates. Penicillin and ceftriaxone nonsusceptibility remained stable over the study period. Ceftriaxone nonsusceptibility was associated with increased mortality among patients ≥5 years of age with meningitis. The introduction of a pneumococcal conjugate vaccine may reduce ceftriaxone-nonsusceptible meningitis.
PMCID: PMC4068496  PMID: 24687499
8.  Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model 
PLoS Computational Biology  2014;10(8):e1003788.
The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance.
Author Summary
Whole genome sequencing has revolutionised the study of pathogenic microorganisms. It has also become so affordable that hundreds of samples can reasonably be sequenced in an individual project, creating a wealth of data. Estimating the bacterial core genome – traditionally defined as those genes present in all genomes – is an important initial step in population genomics analyses. We developed a simple statistical model to estimate the number of core genes in a bacterial genome dataset, calculated pairwise evolutionary distances (p-distances) based on differences among nucleotide sequences, and plotted the median p-distance for each core gene relative to its genome location. Low p-distance values indicate highly-conserved genes; high values suggest genes under selection and/or undergoing recombination. The genome diagrams depict areas of interest in genomes that can be explored in further detail. Using our method, we analysed five bacterial species comprising a total of 2096 genomes. This revealed new information related to antibiotic resistance and virulence for two bacterial species and demonstrated that the function of many core genes in bacteria is still unknown. Our model provides a highly-accessible, publicly-available tool to use on the vast quantities of genome sequence data now available.
PMCID: PMC4140633  PMID: 25144616
9.  Pneumococcal colonisation density: a new marker for disease severity in HIV-infected adults with pneumonia 
BMJ Open  2014;4(8):e005953.
A high genomic load of Pneumococcus from blood or cerebrospinal fluid has been associated with increased mortality. We aimed to analyse whether nasopharyngeal colonisation density in HIV-infected patients with community-acquired pneumonia (CAP) is associated with markers of disease severity or poor outcome.
Quantitative lytA real-time PCR was performed on nasopharyngeal swabs in HIV-infected South African adults hospitalised for acute CAP at Chris Hani Baragwanath Hospital, Soweto, South Africa. Pneumonia aetiology was considered pneumococcal if any sputum culture or Gram stain, urinary pneumococcal C-polysaccharide-based antigen, blood culture or whole blood lytA real-time PCR revealed pneumococci.
There was a moderate correlation between the mean nasopharyngeal colonisation densities and increasing CURB65 scores among all-cause patients with pneumonia (Spearman correlation coefficient r=0.15, p=0.06) or with the Pitt bacteraemia score among patients with pneumococcal bacteraemia (p=0.63). In patients with pneumococcal pneumonia, nasopharyngeal pneumococcal colonisation density was higher among non-survivors than survivors (7.7 vs 6.1 log10 copies/mL, respectively, p=0.02) and among those who had pneumococci identified from blood cultures and/or by whole blood lytA real-time PCR than those with non-bacteraemic pneumococcal pneumonia (6.6 vs 5.6 log10 copies/mL, p=0.03). Nasopharyngeal colonisation density correlated positively with the biomarkers procalcitonin (Spearman correlation coefficient r=0.37, p<0.0001), proadrenomedullin (r=0.39, p=0.008) and copeptin (r=0.30, p=0.01).
In addition to its previously reported role as a diagnostic tool for pneumococcal pneumonia, quantitative nasopharyngeal colonisation density also correlates with mortality and prognostic biomarkers. It may also be useful as a severity marker for pneumococcal pneumonia in HIV-infected adults.
PMCID: PMC4127937  PMID: 25113557
10.  The Emergence of Bacterial “Hopeful Monsters” 
mBio  2014;5(4):e01550-14.
The global spread of antibiotic-resistant bacteria has largely been driven by the dissemination of successful lineages. A particularly important example is sequence type (ST) 258 of Klebsiella pneumoniae, a common cause of health care-associated infections. Representatives of this lineage carry a variable array of plasmid-borne resistance genes, typically including a carbapenemase effective against the full range of clinically important β-lactams. In their recent mBio article, Chen et al. [mBio 5(3):e01355-14] described how ST258 emerged through “hybridization” between two other strains, with a second recombination resulting in the diversification of a key antigen. This commentary describes the findings in the context of other examples where saltational evolution has resulted in the sudden emergence of important pathogenic bacteria.
PMCID: PMC4128365  PMID: 25073645
11.  Variable recombination dynamics during the emergence, transmission and ‘disarming’ of a multidrug-resistant pneumococcal clone 
BMC Biology  2014;12:49.
Pneumococcal β-lactam resistance was first detected in Iceland in the late 1980s, and subsequently peaked at almost 25% of clinical isolates in the mid-1990s largely due to the spread of the internationally-disseminated multidrug-resistant PMEN2 (or Spain6B-2) clone of Streptococcus pneumoniae.
Whole genome sequencing of an international collection of 189 isolates estimated that PMEN2 emerged around the late 1960s, developing resistance through multiple homologous recombinations and the acquisition of a Tn5253-type integrative and conjugative element (ICE). Two distinct clades entered Iceland in the 1980s, one of which had acquired a macrolide resistance cassette and was estimated to have risen sharply in its prevalence by coalescent analysis. Transmission within the island appeared to mainly emanate from Reykjavík and the Southern Peninsular, with evolution of the bacteria effectively clonal, mainly due to a prophage disrupting a gene necessary for genetic transformation in many isolates. A subsequent decline in PMEN2’s prevalence in Iceland coincided with a nationwide campaign that reduced dispensing of antibiotics to children in an attempt to limit its spread. Specific mutations causing inactivation or loss of ICE-borne resistance genes were identified from the genome sequences of isolates that reverted to drug susceptible phenotypes around this time. Phylogenetic analysis revealed some of these occurred on multiple occasions in parallel, suggesting they may have been at least temporarily advantageous. However, alteration of ‘core’ sequences associated with resistance was precluded by the absence of any substantial homologous recombination events.
PMEN2’s clonal evolution was successful over the short-term in a limited geographical region, but its inability to alter major antigens or ‘core’ gene sequences associated with resistance may have prevented persistence over longer timespans.
PMCID: PMC4094930  PMID: 24957517
Bacterial evolution; Antibiotic resistance; Recombination; Mobile genetic elements; Coalescent analysis; Phylogeography
12.  Impact of Experimental Human Pneumococcal Carriage on Nasopharyngeal Bacterial Densities in Healthy Adults 
PLoS ONE  2014;9(6):e98829.
Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study’s sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute.
PMCID: PMC4051691  PMID: 24915552
13.  Evidence for Soft Selective Sweeps in the Evolution of Pneumococcal Multidrug Resistance and Vaccine Escape 
Genome Biology and Evolution  2014;6(7):1589-1602.
The multidrug-resistant Streptococcus pneumoniae Taiwan19F-14, or PMEN14, clone was first observed with a 19F serotype, which is targeted by the heptavalent polysaccharide conjugate vaccine (PCV7). However, “vaccine escape” PMEN14 isolates with a 19A serotype became an increasingly important cause of disease post-PCV7. Whole genome sequencing was used to characterize the recent evolution of 173 pneumococci of, or related to, PMEN14. This suggested that PMEN14 is a single lineage that originated in the late 1980s in parallel with the acquisition of multiple resistances by close relatives. One of the four detected serotype switches to 19A generated representatives of the sequence type (ST) 320 isolates that have been highly successful post-PCV7. A second produced an ST236 19A genotype with reduced resistance to β-lactams owing to alteration of pbp1a and pbp2x sequences through the same recombination that caused the change in serotype. A third, which generated a mosaic capsule biosynthesis locus, resulted in serotype 19A ST271 isolates. The rapid diversification through homologous recombination seen in the global collection was similarly observed in the absence of vaccination in a set of isolates from the Maela refugee camp in Thailand, a collection that also allowed variation to be observed within carriage through longitudinal sampling. This suggests that some pneumococcal genotypes generate a pool of standing variation that is sufficiently extensive to result in “soft” selective sweeps: The emergence of multiple mutants in parallel upon a change in selection pressure, such as vaccine introduction. The subsequent competition between these mutants makes this phenomenon difficult to detect without deep sampling of individual lineages.
PMCID: PMC4122920  PMID: 24916661
bacterial evolution; recombination; vaccine escape; antibiotic resistance; selective sweeps; phylogenomics
14.  220D-F2 from Rubus ulmifolius Kills Streptococcus pneumoniae Planktonic Cells and Pneumococcal Biofilms 
PLoS ONE  2014;9(5):e97314.
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.
PMCID: PMC4019571  PMID: 24823499
16.  Impact of Pneumococcal Conjugate Vaccination of Infants on Pneumonia and Influenza Hospitalization and Mortality in All Age Groups in the United States 
mBio  2011;2(1):e00309-10.
A seven-valent pneumococcal conjugate vaccine (PCV7) introduced in the United States in 2000 has been shown to reduce invasive pneumococcal disease (IPD) in both vaccinated children and adults through induction of herd immunity. We assessed the impact of infant immunization on pneumococcal pneumonia hospitalizations and mortality in all age groups using Health Care Utilization Project State Inpatient Databases (SID) for 1996 to 2006 from 10 states; SID contain 100% samples of ICD9-coded hospitalization data for the selected states. Compared to a 1996–1997 through 1998–1999 baseline, by the 2005–2006 season, both IPD and pneumococcal pneumonia hospitalizations and deaths had decreased substantially in all age groups, including a 47% (95% confidence interval [CI], 38 to 54%) reduction in nonbacteremic pneumococcal pneumonia (ICD9 code 481 with no codes indicating IPD) in infants <2 years old and a 54% reduction (CI, 53 to 56%) in adults ≥65 years of age. A model developed to calculate the total burden of pneumococcal pneumonia prevented by infant PCV7 vaccination in the United States from 2000 to 2006 estimated a reduction of 788,838 (CI, 695,406 to 875,476) hospitalizations for pneumococcal pneumonia. Ninety percent of the reduction in model-attributed pneumococcal pneumonia hospitalizations occurred through herd immunity among adults 18 years old and older; similar proportions were found in pneumococcal disease mortality prevented by the vaccine. In the first seasons after PCV introduction, when there were substantial state differences in coverage among <5-year-olds, states with greater coverage had significantly fewer influenza-associated pneumonia hospitalizations among children, suggesting that PCV7 use also reduces influenza-attributable pneumonia hospitalizations.
Pneumonia is the world’s leading cause of death in children and the leading infectious cause of death among U.S. adults 65 years old and older. Pneumococcal conjugate vaccination of infants has previously been shown to reduce invasive pneumococcal disease (IPD) among seniors through prevention of pneumococcal transmission from infants to adults (herd immunity). Our analysis documents a significant vaccine-associated reduction not only in IPD but also in pneumococcal pneumonia hospitalizations and inpatient mortality rates among both vaccinated children and unvaccinated adults. We estimate that fully 90% of the reduction in the pneumonia hospitalization burden occurred among adults. Moreover, states that more rapidly introduced their infant pneumococcal immunization programs had greater reductions in influenza-associated pneumonia hospitalization of children, presumably because the vaccine acts to prevent the pneumococcal pneumonia that frequently follows influenza virus infection. Our results indicate that seven-valent pneumococcal conjugate vaccine use has yielded far greater benefits through herd immunity than have previously been recognized.
PMCID: PMC3025524  PMID: 21264063
17.  Influence of bacterial interactions on pneumococcal colonization of the nasopharynx 
Trends in microbiology  2012;21(3):129-135.
Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage.
PMCID: PMC3729046  PMID: 23273566
Streptococcus pneumoniae; the pneumococcus; co-colonization; carriage; nasopharynx; interaction
18.  Surveillance for Antimicrobial Drug Resistance in Under-Resourced Countries 
Emerging Infectious Diseases  2014;20(3):434-441.
TOC summary: New programs can be improved by drawing on lessons from previous successful efforts.
Antimicrobial drug resistance is usually not monitored in under-resourced countries because they lack surveillance networks, laboratory capacity, and appropriate diagnostics. This accelerating problem accounts for substantial number of excess deaths, especially among infants. Infections particularly affected by antimicrobial drug resistance include tuberculosis, malaria, severe acute respiratory infections, and sepsis caused by gram-negative bacteria. Nonetheless, mapping antimicrobial drug resistance is feasible in under-resourced countries, and lessons can be learned from previous successful efforts. Specimen shipping conditions, data standardization, absence of contamination, and adequate diagnostics must be ensured. As a first step toward solving this problem, we propose that a road map be created at the international level to strengthen antimicrobial resistance surveillance in under-resourced countries. This effort should include a research agenda; a map of existing networks and recommendations to unite them; and a communication plan for national, regional, and international organizations and funding agencies.
PMCID: PMC3944851  PMID: 24564906
antimicrobial resistance; surveillance; under-resourced countries; diagnostics
19.  Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice 
mBio  2014;5(1):e01040-13.
Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection.
Following infection with an influenza virus, infected or recently recovered individuals become transiently susceptible to excess bacterial infections, particularly Streptococcus pneumoniae and Staphylococcus aureus. Indeed, in the absence of preexisting comorbidities, bacterial infections are a leading cause of severe disease during influenza epidemics. While this synergy has been known and is well studied, what has not been explored is the natural extension of these interactions to live attenuated influenza vaccines (LAIVs). Here we show, in mice, that vaccination with LAIV primes the upper respiratory tract for increased bacterial growth and persistence of bacterial carriage, in a manner nearly identical to that seen following wild-type influenza virus infections. Importantly, LAIV, unlike wild-type virus, did not increase severe bacterial disease of the lower respiratory tract. These findings may have consequences for individual bacterial disease processes within the upper respiratory tract, as well as bacterial transmission dynamics within LAIV-vaccinated populations
PMCID: PMC3944816  PMID: 24549845
20.  Clinical Epidemiology of Bocavirus, Rhinovirus, Two Polyomaviruses and Four Coronaviruses in HIV-Infected and HIV-Uninfected South African Children 
PLoS ONE  2014;9(2):e86448.
Advances in molecular diagnostics have implicated newly-discovered respiratory viruses in the pathogenesis of pneumonia. We aimed to determine the prevalence and clinical characteristics of human bocavirus (hBoV), human rhinovirus (hRV), polyomavirus-WU (WUPyV) and –KI (KIPyV) and human coronaviruses (CoV)-OC43, -NL63, -HKU1 and -229E among children hospitalized with lower respiratory tract infections (LRTI).
Multiplex real-time reverse-transcriptase polymerase chain reaction was undertaken on archived nasopharyngeal aspirates from HIV-infected and –uninfected children (<2 years age) hospitalized for LRTI, who had been previously investigated for respiratory syncytial virus, human metapneumovirus, parainfluenza I–III, adenovirus and influenza A/B.
At least one of these viruses were identified in 274 (53.0%) of 517 and in 509 (54.0%) of 943 LRTI-episodes in HIV-infected and -uninfected children, respectively. Human rhinovirus was the most prevalent in HIV-infected (31.7%) and –uninfected children (32.0%), followed by CoV-OC43 (12.2%) and hBoV (9.5%) in HIV-infected; and by hBoV (13.3%) and WUPyV (11.9%) in HIV-uninfected children. Polyomavirus-KI (8.9% vs. 4.8%; p = 0.002) and CoV-OC43 (12.2% vs. 3.6%; p<0.001) were more prevalent in HIV-infected than –uninfected children. Combined with previously-tested viruses, respiratory viruses were identified in 60.9% of HIV-infected and 78.3% of HIV-uninfected children. The newly tested viruses were detected at high frequency in association with other respiratory viruses, including previously-investigated viruses (22.8% in HIV-infected and 28.5% in HIV–uninfected children).
We established that combined with previously-investigated viruses, at least one respiratory virus was identified in the majority of HIV-infected and HIV-uninfected children hospitalized for LRTI. The high frequency of viral co-infections illustrates the complexities in attributing causality to specific viruses in the aetiology of LRTI and may indicate a synergetic role of viral co-infections in the pathogenesis of childhood LRTI.
PMCID: PMC3911925  PMID: 24498274
21.  Pneumococcal Capsular Switching: A Historical Perspective 
The Journal of Infectious Diseases  2012;207(3):439-449.
Background. Changes in serotype prevalence among pneumococcal populations result from both serotype replacement and serotype (capsular) switching. Temporal changes in serotype distributions are well documented, but the contribution of capsular switching to such changes is unknown. Furthermore, it is unclear to what extent vaccine-induced selective pressures drive capsular switching.
Methods. Serotype and multilocus sequence typing data for 426 pneumococci dated from 1937 through 2007 were analyzed. Whole-genome sequence data for a subset of isolates were used to investigate capsular switching events.
Results. We identified 36 independent capsular switch events, 18 of which were explored in detail with whole-genome sequence data. Recombination fragment lengths were estimated for 11 events and ranged from approximately 19.0 kb to ≥58.2 kb. Two events took place no later than 1960, and the imported DNA included the capsular locus and the nearby penicillin-binding protein genes pbp2x and pbp1a.
Conclusions. Capsular switching has been a regular occurrence among pneumococcal populations throughout the past 7 decades. Recombination of large DNA fragments (>30 kb), sometimes including the capsular locus and penicillin-binding protein genes, predated both vaccine introduction and widespread antibiotic use. This type of recombination has likely been an intrinsic feature throughout the history of pneumococcal evolution.
PMCID: PMC3537446  PMID: 23175765
Capsule; serotype; switching; pneumococcus
22.  Density Interactions between Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus in the Nasopharynx of Young Peruvian Children 
Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus are commonly carried in the nasopharynx (NP) of young children, and have been speculated to interact with each other. Although earlier studies used cultures alone to assess these interactions, the addition of real-time quantitative polymerase chain reaction (qPCR) provides further insight into these interactions. We compared results of culture and qPCR for the detection of these three bacteria in 446 NP samples collected from 360 healthy young children in a prospective cohort study in the Peruvian Andes. Patterns of concurrent bacterial colonization were studied using repeated measures logistic regression models with generalized estimating equations. Spearman correlation coefficients were employed to assess correlations among bacterial densities. At a bacterial density <105 colony forming units (CFU)/ml measured by qPCR, culture detected significantly less carriers (P<0.0001) for all three pathogens, than at a bacterial density >105 CFU/ml. In addition, there was a positive association between S. pneumoniae and H. influenzae colonization measured by both culture (OR 3.11 – 3.17, p < 0.001) and qPCR (OR 1.95 – 1.97, p < 0.01). The densities of S. pneumoniae and H. influenzae, measured by qPCR, were positively correlated (correlation coefficient 0.32, p < 0.001). A negative association was found between the presence of S. pneumoniae and S. aureus in carriage with both culture (OR 0.45, p = 0.024) and qPCR (OR 0.61, p < 0.05). The impact of density on detection by culture and the observed density-related interactions support use of qPCR in additional studies to examine vaccine effects on diverse bacterial species.
PMCID: PMC3525793  PMID: 22935873
Streptococcus pneumoniae; nasopharyngeal carriage; interaction
23.  Time from Illness Onset to Death, 1918 Influenza and Pneumococcal Pneumonia 
Emerging Infectious Diseases  2009;14(2):1193-9.
PMCID: PMC2657896  PMID: 19193293
influenza; pneumococcal; pneumonia; pandemic; 1918; letter
24.  Interrelationship of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus colonization within and between pneumococcal-vaccine naïve mother-child dyads 
BMC Infectious Diseases  2013;13:483.
A high prevalence of bacterial nasopharyngeal co-infections has been reported in children, however, such data is limited in adults. We examined the interaction of Haemophilus influenzae, Staphylococcus aureus and Streptococcus pneumoniae pharyngeal colonization in mother-child dyads.
Pneumococcal-vaccine naïve children and their mothers had pharyngeal swabs undertaken at 1.6, 2.5, 3.5, 4.5, 7.4, 9.5, 12.5, 16.2 and 24.2 months of child’s age. Swabs were cultured for S. pneumoniae, H. influenzae and S. aureus using standard microbiologic methods. Multivariate generalized estimating equation-models were used to explore the associations of the three bacteria within and between children and their mothers.
In children, the observed probability of co-colonization was higher than expected. Well-defined associations in colonization between the bacteria were observed in children but not among mothers. In children, a synergistic association was observed between S. pneumoniae and H. influenzae (Adjusted odds ratio (AOR): 1.75, 95% CI: 1.32-2.32) and a negative association between S. pneumoniae and S. aureus (AOR: 0.51, 95% CI: 0.39-0.67) or H. influenzae and S. aureus (AOR: 0.24, 95% CI: 0.16-0.34) colonization. Additionally, all three bacteria had a higher likelihood of concurrent colonization. There was a strong association in colonization by the bacteria in children and their mothers, including increased likelihood of maternal colonization if the child was colonized by S. pneumoniae (AOR: 1.84, 95% CI: 1.28-2.63) and H. influenzae (AOR: 6.34, 95% CI: 2.24-18.0).
The effects of immunization of children with pneumococcal-conjugate-vaccine in settings such as ours needs monitoring with regard to potential changes of pharyngeal bacterial ecology which could occur in vaccinated and –unvaccinated age-groups.
PMCID: PMC4015913  PMID: 24134472
Bacterial interaction; Colonization; Pneumococcal conjugate vaccine; Pneumococcus; Staphylococcus aureus; Haemophilus influenzae
25.  Quorum-Sensing Systems LuxS/Autoinducer 2 and Com Regulate Streptococcus pneumoniae Biofilms in a Bioreactor with Living Cultures of Human Respiratory Cells 
Infection and Immunity  2013;81(4):1341-1353.
Streptococcus pneumoniae forms organized biofilms in the human upper respiratory tract that may play an essential role in both persistence and acute respiratory infection. However, the production and regulation of biofilms on human cells is not yet fully understood. In this work, we developed a bioreactor with living cultures of human respiratory epithelial cells (HREC) and a continuous flow of nutrients, mimicking the microenvironment of the human respiratory epithelium, to study the production and regulation of S. pneumoniae biofilms (SPB). SPB were also produced under static conditions on immobilized HREC. Our experiments demonstrated that the biomass of SPB increased significantly when grown on HREC compared to the amount on abiotic surfaces. Additionally, pneumococcal strains produced more early biofilms on lung cells than on pharyngeal cells. Utilizing the bioreactor or immobilized human cells, the production of early SPB was found to be regulated by two quorum-sensing systems, Com and LuxS/AI-2, since a mutation in either comC or luxS rendered the pneumococcus unable to produce early biofilms on HREC. Interestingly, while LuxS/autoinducer 2 (AI-2) regulated biofilms on both HREC and abiotic surfaces, Com control was specific for those structures produced on HREC. The biofilm phenotypes of strain D39-derivative ΔcomC and ΔluxS QS mutants were reversed by genetic complementation. Of note, SPB formed on immobilized HREC and incubated under static conditions were completely lysed 24 h postinoculation. Biofilm lysis was also regulated by the Com and LuxS/AI-2 quorum-sensing systems.
PMCID: PMC3639605  PMID: 23403556

Results 1-25 (98)