PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (241)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Meeting report: GenBank microbial genomic taxonomy workshop (12–13 May, 2015) 
Many genomes are incorrectly identified at GenBank. We developed a plan to find and correct misidentified genomes using genomic comparison statistics together with a scaffold of reliably identified genomes from type. A workshop was organized with broad representation from the bacterial taxonomic community to review the proposal, the GenBank Microbial Genomic Taxonomy Workshop, Bethesda MD, May 12–13, 2015.
Electronic supplementary material
The online version of this article (doi:10.1186/s40793-016-0134-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s40793-016-0134-1
PMCID: PMC4748488
GenBank; Genomic taxonomy; Misidentified sequence entries
2.  454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils 
SpringerPlus  2015;4:471.
Termites constitute part of diverse and economically important termite fauna in Africa, but information on gut microbiota and their associated soil microbiome is still inadequate. In this study, we assessed and compared the bacterial diversity and community structure between termites’ gut, their mounds and surrounding soil using the 454 pyrosequencing-based analysis of 16S rRNA gene sequences. A wood-feeder termite (Microcerotermes sp.), three fungus-cultivating termites (Macrotermes michaelseni, Odontotermes sp. and Microtermes sp.), their associated mounds and corresponding savannah soil samples were analyzed. The pH of the gut homogenates and soil physico-chemical properties were determined. The results indicated significant difference in bacterial community composition and structure between the gut and corresponding soil samples. Soil samples (Chao1 index ranged from 1359 to 2619) had higher species richness than gut samples (Chao1 index ranged from 461 to 1527). The bacterial composition and community structure in the gut of Macrotermes michaelseni and Odontotermes sp. were almost identical but different from that of Microtermes and Microcerotermes species, which had unique community structures. The most predominant bacterial phyla in the gut were Bacteroidetes (40–58 %), Spirochaetes (10–70 %), Firmicutes (17–27 %) and Fibrobacteres (13 %) while in the soil samples were Acidobacteria (28–45 %), Actinobacteria (20–40 %) and Proteobacteria (18–24 %). Some termite gut-specific bacterial lineages belonging to the genera Dysgonomonas, Parabacteroides, Paludibacter, Tannerella, Alistipes, BCf9-17 termite group and Termite Treponema cluster were observed. The results not only demonstrated a high level of bacterial diversity in the gut and surrounding soil environments, but also presence of distinct bacterial communities that are yet to be cultivated. Therefore, combined efforts using both culture and culture-independent methods are suggested to comprehensively characterize the bacterial species and their specific roles in these environments.
Electronic supplementary material
The online version of this article (doi:10.1186/s40064-015-1262-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s40064-015-1262-6
PMCID: PMC4556716  PMID: 26355944
Termites gut symbionts; 454 Pyrosequencing; OTUs; Macrotermitinae
3.  Phylogeny-driven target selection for large-scale genome-sequencing (and other) projects 
Standards in Genomic Sciences  2013;8(2):360-374.
Despite the steadily decreasing costs of genome sequencing, prioritizing organisms for sequencing remains important in large-scale projects. Phylogeny-based selection is of interest to identify those organisms whose genomes can be expected to differ most from those that have already been sequenced. Here, we describe a method that infers a phylogenetic scoring independent of which set of organisms has previously been targeted, which is computationally simple and easy to apply in practice. The scoring itself, as well as pre- and post-processing of the data, is illustrated using two real-world examples in which the method has already been applied for selecting targets for genome sequencing. These projects are the JGI CSP Genomic Encyclopedia of Bacteria and Archaea phase I, targeting 1,000 type strains, and, on a smaller-scale, the phylogenomics of the Roseobacter clade. Potential artifacts of the method are discussed and compared to a selection approach based on the taxonomic classification.
doi:10.4056/sigs.3446951
PMCID: PMC3746418  PMID: 23991265
phylogenetic diversity; genomics; taxon selection; 16S rRNA; tree of life; Genomic Encyclopedia; Roseobacter clade
4.  High quality draft genome sequence of Bacteroides barnesiae type strain BL2T (DSM 18169T) from chicken caecum 
Bacteroides barnesiae Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. Strain BL2T is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microbiota of the caecum is of benefit for the host and may impact poultry farming. The 3,621,509 bp long genome with its 3,059 protein-coding and 97 RNA genes is a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.
doi:10.1186/s40793-015-0045-6
PMCID: PMC4572637  PMID: 26380636
Strictly anaerobic; Non-motile; Rod-shaped; Gram-negative; Cecum; Poultry; Bacteroidaceae
5.  Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains 
The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity.
doi:10.1186/s40793-015-0017-x
PMCID: PMC4511459  PMID: 26203337
Genome sequencing; Type stains; Prokaryotes
6.  Genome sequence of the Roseovarius mucosus type strain (DSM 17069T), a bacteriochlorophyll a-containing representative of the marine Roseobacter group isolated from the dinoflagellate Alexandrium ostenfeldii 
Roseovarius mucosus Biebl et al. 2005 is a bacteriochlorophyll a-producing representative of the marine Roseobacter group within the alphaproteobacterial family Rhodobacteraceae, which was isolated from the dinoflagellate Alexandrium ostenfeldii. The marine Roseobacter group was found to be abundant in the ocean and plays an important role for global and biogeochemical processes. Here we describe the features of the R. mucosus strain DFL-24T together with its genome sequence and annotation generated from a culture of DSM 17069T. The 4,247,724 bp containing genome sequence encodes 4,194 protein-coding genes and 57 RNA genes. In addition to the presence of four plasmids, genome analysis revealed the presence of genes associated with host colonization, DMSP utilization, cytotoxins, and quorum sensing that could play a role in the interrelationship of R. mucosus with the dinoflagellate A. ostenfeldii and other marine organisms. Furthermore, the genome encodes genes associated with mixotrophic growth, where both reduced inorganic compounds for lithotrophic growth and a photoheterotrophic lifestyle using light as additional energy source could be used.
doi:10.1186/1944-3277-10-17
PMCID: PMC4511512  PMID: 26203330
Dinoflagellate; Plasmid; DMSP; Cytotoxin; Quorum sensing; Lithoheterotrophy; Photoheterotrophy; Mixotrophy; Rhodobacteraceae; Alphaproteobacteria
7.  High quality draft genome sequence and analysis of Pontibacter roseus type strain SRC-1T (DSM 17521T) isolated from muddy waters of a drainage system in Chandigarh, India 
Pontibacter roseus is a member of genus Pontibacter family Cytophagaceae, class Cytophagia. While the type species of the genus Pontibacter actiniarum was isolated in 2005 from a marine environment, subsequent species of the same genus have been found in different types of habitats ranging from seawater, sediment, desert soil, rhizosphere, contaminated sites, solar saltern and muddy water. Here we describe the features of Pontibacter roseus strain SRC-1T along with its complete genome sequence and annotation from a culture of DSM 17521T. The 4,581,480 bp long draft genome consists of 12 scaffolds with 4,003 protein-coding and 50 RNA genes and is a part of Genomic Encyclopedia of Type Strains: KMG-I project.
doi:10.1186/1944-3277-10-8
PMCID: PMC4511580  PMID: 26203325
Aerobic; Gram-negative; Non-motile; Obligate aerobe; Halotolerant; Menaquinone; GEBA; KMG-I
8.  Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat 
During a study of the anaerobic microbial community of a lithifying hypersaline microbial mat of Lake 21 on the Kiritimati atoll (Kiribati Republic, Central Pacific) strain L21-RPul-D2T was isolated. The closest phylogenetic neighbor was Spirochaeta africana Z-7692T that shared a 16S rRNA gene sequence identity value of 90% with the novel strain and thus was only distantly related. A comprehensive polyphasic study including determination of the complete genome sequence was initiated to characterize the novel isolate.
Cells of strain L21-RPul-D2T had a size of 0.2 – 0.25 × 8–9 μm, were helical, motile, stained Gram-negative and produced an orange carotenoid-like pigment. Optimal conditions for growth were 35°C, a salinity of 50 g/l NaCl and a pH around 7.0. Preferred substrates for growth were carbohydrates and a few carboxylic acids. The novel strain had an obligate fermentative metabolism and produced ethanol, acetate, lactate, hydrogen and carbon dioxide during growth on glucose. Strain L21-RPul-D2T was aerotolerant, but oxygen did not stimulate growth. Major cellular fatty acids were C14:0, iso-C15:0, C16:0 and C18:0. The major polar lipids were an unidentified aminolipid, phosphatidylglycerol, an unidentified phospholipid and two unidentified glycolipids. Whole-cell hydrolysates contained L-ornithine as diagnostic diamino acid of the cell wall peptidoglycan. The complete genome sequence was determined and annotated. The genome comprised one circular chromosome with a size of 3.78 Mbp that contained 3450 protein-coding genes and 50 RNA genes, including 2 operons of ribosomal RNA genes. The DNA G + C content was determined from the genome sequence as 51.9 mol%. There were no predicted genes encoding cytochromes or enzymes responsible for the biosynthesis of respiratory lipoquinones.
Based on significant differences to the uncultured type species of the genus Spirochaeta, S. plicatilis, as well as to any other phylogenetically related cultured species it is suggested to place strain L21-RPul-D2T (=DSM 27196T = JCM 18663T) in a novel species and genus, for which the name Salinispira pacifica gen. nov., sp. nov. is proposed.
doi:10.1186/1944-3277-10-7
PMCID: PMC4511686  PMID: 26203324
Spirochaetes; Fermentative metabolism; Oxygen tolerance; Hypersaline microbial mat; Kiritimati atoll
9.  High quality draft genome sequence of Meganema perideroedes str. Gr1T and a proposal for its reclassification to the family Meganemaceae fam. nov. 
Meganema perideroedes Gr1T is a filamentous bacterium isolated from an activated sludge wastewater treatment plant where it is implicated in poor sludge settleability (bulking). M. perideroedes is the sole described species of the genus Meganema and of the proposed novel family “Meganemaceae”. Here we describe the features of the type strain Gr1T along with its annotated genome sequence. The 3,409,949 bp long draft genome consists of 22 scaffolds with 3,033 protein-coding and 59 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes KMG project. Notably, genome annotation indicated the potential for facultative methylotrophy. However, the ability to utilize methanol as a carbon source could not be empirically demonstrated for the type strain or for in situ Meganema spp. strains.
doi:10.1186/s40793-015-0013-1
PMCID: PMC4511698  PMID: 26203335
Activated sludge; Bulking; Facultative methylotroph; Filamentous; Meganema ; Meganemaceae ; Wastewater
10.  Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains 
PLoS Biology  2014;12(8):e1001920.
This manuscript calls for an international effort to generate a comprehensive catalog from genome sequences of all the archaeal and bacterial type strains.
Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.
doi:10.1371/journal.pbio.1001920
PMCID: PMC4122341  PMID: 25093819
11.  Genome sequence of Shimia str. SK013, a representative of the Roseobacter group isolated from marine sediment 
Shimia strain SK013 is an aerobic, Gram-negative, rod shaped alphaproteobacterium affiliated with the Roseobacter group within the family Rhodobacteraceae. The strain was isolated from surface sediment (0–1 cm) of the Skagerrak at 114 m below sea level. The 4,049,808 bp genome of Shimia str. SK013 comprises 3,981 protein-coding genes and 47 RNA genes. It contains one chromosome and no extrachromosomal elements. The genome analysis revealed the presence of genes for a dimethylsulfoniopropionate lyase, demethylase and the trimethylamine methyltransferase (mttB) as well as genes for nitrate, nitrite and dimethyl sulfoxide reduction. This indicates that Shimia str. SK013 is able to switch from aerobic to anaerobic metabolism and thus is capable of aerobic and anaerobic sulfur cycling at the seafloor. Among the ability to convert other sulfur compounds it has the genetic capacity to produce climatically active dimethyl sulfide. Growth on glutamate as a sole carbon source results in formation of cell-connecting filaments, a putative phenotypic adaptation of the surface-associated strain to the environmental conditions at the seafloor. Genome analysis revealed the presence of a flagellum (fla1) and a type IV pilus biogenesis, which is speculated to be a prerequisite for biofilm formation. This is also related to genes responsible for signalling such as N-acyl homoserine lactones, as well as quip-genes responsible for quorum quenching and antibiotic biosynthesis. Pairwise similarities of 16S rRNA genes (98.56 % sequence similarity to the next relative S. haliotis) and the in silico DNA-DNA hybridization (21.20 % sequence similarity to S. haliotis) indicated Shimia str. SK013 to be considered as a new species. The genome analysis of Shimia str. SK013 offered first insights into specific physiological and phenotypic adaptation mechanisms of Roseobacter-affiliated bacteria to the benthic environment.
doi:10.1186/s40793-016-0143-0
PMCID: PMC4818494  PMID: 27042262
Anaerobic metabolism; Cell-connecting filaments; Quorum quenching; Flagella gene cluster; DMSP; DMSO reductase; Denitrification
12.  Geodermatophilus poikilotrophi sp. nov.: A Multitolerant Actinomycete Isolated from Dolomitic Marble 
BioMed Research International  2014;2014:914767.
A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15–35°C, at pH 5.5–9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1ω8c and C16:1ω7c. The 16S rRNA gene showed 97.4–99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (= DSM 44209T = CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments.
doi:10.1155/2014/914767
PMCID: PMC4119925  PMID: 25114928
13.  Genome sequence of the Thermotoga thermarum type strain (LA3T) from an African solfataric spring 
Standards in Genomic Sciences  2014;9(3):1105-1117.
Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum ‘Thermotogae’. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3T is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3016383
PMCID: PMC4148951  PMID: 25197486
anaerobic; motile; thermophilic; chemoorganotrophic; solfataric spring; outer sheath-like structure; Thermotogaceae; GEBA
14.  Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279T), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia 
Standards in Genomic Sciences  2014;9(3):1076-1088.
Methanoplanus limicola Wildgruber et al. 1984 is a mesophilic methanogen that was isolated from a swamp composed of drilling waste near Naples, Italy, shortly after the Archaea were recognized as a separate domain of life. Methanoplanus is the type genus in the family Methanoplanaceae, a taxon that felt into disuse since modern 16S rRNA gene sequences-based taxonomy was established. Methanoplanus is now placed within the Methanomicrobiaceae, a family that is so far poorly characterized at the genome level. The only other type strain of the genus with a sequenced genome, Methanoplanus petrolearius SEBR 4847T, turned out to be misclassified and required reclassification to Methanolacinia. Both, Methanoplanus and Methanolacinia, needed taxonomic emendations due to a significant deviation of the G+C content of their genomes from previously published (pre-genome-sequence era) values. Until now genome sequences were published for only four of the 33 species with validly published names in the Methanomicrobiaceae. Here we describe the features of M. limicola, together with the improved-high-quality draft genome sequence and annotation of the type strain, M3T. The 3,200,946 bp long chromosome (permanent draft sequence) with its 3,064 protein-coding and 65 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.5138968
PMCID: PMC4149034  PMID: 25197484
anaerobic; motile; mesophilic; methanogen; swamp; improved-high-quality draft; Methanomicrobiaceae; GEBA
15.  Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305T), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae 
Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448T, were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.
doi:10.1186/1944-3277-9-10
PMCID: PMC4334474  PMID: 25780503
Non-peptidoglycan bacteria; Stalked bacteria; Halotolerant; Gram-negative; Taxonomic descriptions; Planctomycetales; Planctomycetes; GEBA
16.  Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy 
Although Escherichia coli is the most widely studied bacterial model organism and often considered to be the model bacterium per se, its type strain was until now forgotten from microbial genomics. As a part of the G enomic E ncyclopedia of B acteria and A rchaea project, we here describe the features of E. coli DSM 30083T together with its genome sequence and annotation as well as novel aspects of its phenotype. The 5,038,133 bp containing genome sequence includes 4,762 protein-coding genes and 175 RNA genes as well as a single plasmid. Affiliation of a set of 250 genome-sequenced E. coli strains, Shigella and outgroup strains to the type strain of E. coli was investigated using digital DNA:DNA-hybridization (dDDH) similarities and differences in genomic G+C content. As in the majority of previous studies, results show Shigella spp. embedded within E. coli and in most cases forming a single subgroup of it. Phylogenomic trees also recover the proposed E. coli phylotypes as monophyla with minor exceptions and place DSM 30083T in phylotype B2 with E. coli S88 as its closest neighbor. The widely used lab strain K-12 is not only genomically but also physiologically strongly different from the type strain. The phylotypes do not express a uniform level of character divergence as measured using dDDH, however, thus an alternative arrangement is proposed and discussed in the context of bacterial subspecies. Analyses of the genome sequences of a large number of E. coli strains and of strains from > 100 other bacterial genera indicate a value of 79-80% dDDH as the most promising threshold for delineating subspecies, which in turn suggests the presence of five subspecies within E. coli.
doi:10.1186/1944-3277-9-2
PMCID: PMC4334874  PMID: 25780495
Phylogenomics; Phylotypes; GBDP; OPM; Phenotype; Clustering; Supermatrix; DNA:DNA hybridization; G+C content
17.  High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775T, a plant pathogen of French bean pods 
Phaseolibacter flectens strain ATCC 12775T (Halpern et al., Int J Syst Evol Microbiol 63:268–273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.
Electronic supplementary material
The online version of this article (doi:10.1186/s40793-015-0127-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s40793-015-0127-5
PMCID: PMC4710985  PMID: 26767091
Phaseolibacter flectens; Enterobacteriaceae; plant pathogen; French bean pod; Phaseolus vulgaris
18.  Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea 
Scientific Reports  2016;6:19181.
The candidate Division MSBL1 (Mediterranean Sea Brine Lakes 1) comprises a monophyletic group of uncultured archaea found in different hypersaline environments. Previous studies propose methanogenesis as the main metabolism. Here, we describe a metabolic reconstruction of MSBL1 based on 32 single-cell amplified genomes from Brine Pools of the Red Sea (Atlantis II, Discovery, Nereus, Erba and Kebrit). Phylogeny based on rRNA genes as well as conserved single copy genes delineates the group as a putative novel lineage of archaea. Our analysis shows that MSBL1 may ferment glucose via the Embden–Meyerhof–Parnas pathway. However, in the absence of organic carbon, carbon dioxide may be fixed via the ribulose bisphosphate carboxylase, Wood-Ljungdahl pathway or reductive TCA cycle. Therefore, based on the occurrence of genes for glycolysis, absence of the core genes found in genomes of all sequenced methanogens and the phylogenetic position, we hypothesize that the MSBL1 are not methanogens, but probably sugar-fermenting organisms capable of autotrophic growth. Such a mixotrophic lifestyle would confer survival advantage (or possibly provide a unique narrow niche) when glucose and other fermentable sugars are not available.
doi:10.1038/srep19181
PMCID: PMC4725937  PMID: 26758088
19.  Genome sequence of Frateuria aurantia type strain (Kondô 67T), a xanthomonade isolated from Lilium auratium Lindl. 
Standards in Genomic Sciences  2013;9(1):83-92.
Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67T was initially (1958) identified as a member of ‘Acetobacter aurantius’, a name that was not considered for the approved list. Kondô 67T was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondô 67T is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.4338002
PMCID: PMC3910546  PMID: 24501647
strictly aerobic; motile; rod-shaped; acetogenic; mesophilic; ‘Acetobacter aurantius’; Xanthomonadaceae; GEBA
20.  Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701T) and emended description of the genus Thermanaerovibrio 
Standards in Genomic Sciences  2013;9(1):57-70.
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.4237901
PMCID: PMC3910556  PMID: 24501645
obligate anaerobic; motile; curved rods; organotrophic; S0-reduction; cyanobacterial mat; Synergistaceae; Synergistetes; GEBA
21.  Genome sequence of the chemoheterotrophic soil bacterium Saccharomonospora cyanea type strain (NA-134T) 
Standards in Genomic Sciences  2013;9(1):28-41.
Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
doi:10.4056/sigs.4207886
PMCID: PMC3910552  PMID: 24501643
draft genome; aerobic; chemoheterotrophic; Gram-positive; vegetative and aerial mycelia; spore-forming; non-motile; soil bacterium; Pseudonocardiaceae; CSP 2010
22.  Genome sequence of the reddish-pigmented Rubellimicrobium thermophilum type strain (DSM 16684T), a member of the Roseobacter clade 
Standards in Genomic Sciences  2013;8(3):480-490.
Rubellimicrobium thermophilum Denner et al. 2006 is the type species of the genus Rubellimicrobium, a representative of the Roseobacter clade within the Rhodobacteraceae. Members of this clade were shown to be abundant especially in coastal and polar waters, but were also found in microbial mats and sediments. They are metabolically versatile and form a physiologically heterogeneous group within the Alphaproteobacteria. Strain C-Ivk-R2A-2T was isolated from colored deposits in a pulp dryer; however, its natural habitat is so far unknown. Here we describe the features of this organism, together with the draft genome sequence and annotation and novel aspects of its phenotype. The 3,161,245 bp long genome contains 3,243 protein-coding and 45 RNA genes.
doi:10.4056/sigs.4247911
PMCID: PMC3910695  PMID: 24501632
rod-shaped; reddish-pigmented; thermophile; chemoheterotrophic; prophage-like structures; Rhodobacteraceae; Roseobacter clade; Alphaproteobacteria
23.  Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055T) 
Standards in Genomic Sciences  2013;8(2):177-187.
Leptonema illini Hovind-Hougen 1979 is the type species of the genus Leptonema, family Leptospiraceae, phylum Spirochaetes. Organisms of this family have a Gram-negative-like cell envelope consisting of a cytoplasmic membrane and an outer membrane. The peptidoglycan layer is associated with the cytoplasmic rather than the outer membrane. The two flagella of members of Leptospiraceae extend from the cytoplasmic membrane at the ends of the bacteria into the periplasmic space and are necessary for their motility. Here we describe the features of the L. illini type strain, together with the complete genome sequence, and annotation. This is the first genome sequence (finished at the level of Improved High Quality Draft) to be reported from of a member of the genus Leptonema and a representative of the third genus of the family Leptospiraceae for which complete or draft genome sequences are now available. The three scaffolds of the 4,522,760 bp draft genome sequence reported here, and its 4,230 protein-coding and 47 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3637201
PMCID: PMC3746420  PMID: 23991250
Gram-negative; flexible; motile; cytoplasmatic tubules; non-sporulating; axial flagella; aerobic; chemoorganotrophic; Leptospiraceae; GEBA
24.  Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (HT), and emendation of the species Turneriella parva 
Standards in Genomic Sciences  2013;8(2):228-238.
Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was established as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spirochete together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Turneriella and the 13th member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3617113
PMCID: PMC3746428  PMID: 23991255
Gram-negative; motile; axial filaments; helical; flexible; non-sporulating; aerobic; mesophile; Leptospiraceae; GEBA
25.  Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift 
Standards in Genomic Sciences  2013;8(2):165-176.
Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was isolated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be published. The 3,285,855 bp long genome of strain Z-7692T with its 2,817 protein-coding and 57 RNA genes is a part of the G enomic E ncyclopedia of B acteria and A rchaea project.
doi:10.4056/sigs.3607108
PMCID: PMC3746417  PMID: 23991249
anaerobic; aerotolerant; mesophilic; halophilic; spiral-shaped; motile; periplasmic flagella; Gram-negative; chemoorganotrophic; Spirochaetaceae; GEBA

Results 1-25 (241)