Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("titin, Peter")
1.  Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast 
Annals of Botany  2012;110(4):861-873.
Background and Aims
Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known.
The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy.
Key Results
A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season.
The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.
PMCID: PMC3423803  PMID: 22805529
Growth rings; teak; Tectona grandis; vascular cambium; xylem and phloem formation
2.  Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica 
Annals of Botany  2009;103(7):1145-1157.
Background and Aims
Although the lateral movement of water and gas in tree stems is an important issue for understanding tree physiology, as well as for the development of wood preservation technologies, little is known about the vascular pathways for radial flow. The aim of the current study was to understand the occurrence and the structure of anatomical features of sugi (Cryptomeria japonica) wood including the tracheid networks, and area fractions of intertracheary pits, tangential walls of ray cells and radial intercellular spaces that may be related to the radial permeability (conductivity) of the xylem.
Wood structure was investigated by light microscopy and scanning electron microscopy of traditional wood anatomical preparations and by a new method of exposed tangential faces of growth-ring boundaries.
Key Results
Radial wall pitting and radial grain in earlywood and tangential wall pitting in latewood provide a direct connection between subsequent tangential layers of tracheids. Bordered pit pairs occur frequently between earlywood and latewood tracheids on both sides of a growth-ring boundary. In the tangential face of the xylem at the interface with the cambium, the area fraction of intertracheary pit membranes is similar to that of rays (2·8 % and 2·9 %, respectively). The intercellular spaces of rays are continuous across growth-ring boundaries. In the samples, the mean cross-sectional area of individual radial intercellular spaces was 1·2 µm2 and their total volume was 0·06 % of that of the xylem and 2·07 % of the volume of rays.
A tracheid network can provide lateral apoplastic transport of substances in the secondary xylem of sugi. The intertracheid pits in growth-ring boundaries can be considered an important pathway, distinct from that of the rays, for transport of water across growth rings and from xylem to cambium.
PMCID: PMC2707907  PMID: 19258338
Cryptomeria japonica; bordered pit; intercellular spaces; lateral transport; tracheid network; water conduction; xylem permeability

Results 1-2 (2)