PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("kitale, Yukio")
1.  Computational Analysis of siRNA Recognition by the Ago2 PAZ Domain and Identification of the Determinants of RNA-Induced Gene Silencing 
PLoS ONE  2013;8(2):e57140.
RNA interference (RNAi) is a highly specialized process of protein-siRNA interaction that results in the regulation of gene expression and cleavage of target mRNA. The PAZ domain of the Argonaute proteins binds to the 3' end of siRNA, and during RNAi the attaching end of the siRNA switches between binding and release from its binding pocket. This biphasic interaction of the 3' end of siRNA with the PAZ domain is essential for RNAi activity; however, it remains unclear whether stronger or weaker binding with PAZ domain will facilitate or hinder the overall RNAi process. Here we report the correlation between the binding of modified siRNA 3' overhang analogues and their in vivo RNAi efficacy. We found that higher RNAi efficacy was associated with the parameters of lower Ki value, lower total intermolecular energy, lower free energy, higher hydrogen bonding, smaller total surface of interaction and fewer van der Waals interactions. Electrostatic interaction was a minor contributor to compounds recognition, underscoring the presence of phosphate groups in the modified analogues. Thus, compounds with lower binding affinity are associated with better gene silencing. Lower binding strength along with the smaller interaction surface, higher hydrogen bonding and fewer van der Waals interactions were among the markers for favorable RNAi activity. Within the measured parameters, the interaction surface, van der Waals interactions and inhibition constant showed a statistically significant correlation with measured RNAi efficacy. The considerations provided in this report will be helpful in the design of new compounds with better gene silencing ability.
doi:10.1371/journal.pone.0057140
PMCID: PMC3575500  PMID: 23441235
2.  Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol 
Chemico-biological interactions  2010;191(1-3):261-268.
Farnesol (FOH) and geranylgeraniol (GGOH) with multiple biological actions are produced from the mevalonate pathway, and catabolized into farnesoic acid and geranylgeranoic acid, respectively, via the aldehyde intermediates (farnesal and geranylgeranial). We investigated the intracellular distribution, sequences and properties of the oxidoreductases responsible for the metabolic steps in rat tissues. The oxidation of FOH and GGOH into their aldehyde intermediates were mainly mediated by alcohol dehydrogenases 1 (in the liver and colon) and 7 (in the stomach and lung), and the subsequent step into the carboxylic acids was catalyzed by a microsomal aldehyde dehydrogenase. In addition, high reductase activity catalyzing the aldehyde intermediates into FOH (or GGOH) was detected in the cytosols of the extra-hepatic tissues, where the major reductase was identified as aldo-keto reductase (AKR) 1C15. Human reductases with similar specificity were identified as AKR1B10 and AKR1C3, which most efficiently reduced farnesal and geranylgeranial among seven enzymes in the AKR1A-1C subfamilies. The overall metabolism from FOH to farnesoic acid in cultured cells was significantly decreased by overexpression of AKR1C15, and increased by addition of AKR1C3 inhibitors, tolfenamic acid and R-flurbiprofen. Thus, AKRs (1C15 in rats, and 1B10 and 1C3 in humans) may play an important role in controlling the bioavailability of FOH and GGOH.
doi:10.1016/j.cbi.2010.12.017
PMCID: PMC3085043  PMID: 21187079
Alcohol dehydrogenase; Aldehyde dehydrogenase; AKR1C15; AKR1C3; Farnesol; Geranylgeranio
3.  Crystallization of mouse S-adenosyl-l-homocysteine hydrolase 
Mouse S-adenosyl-l-homocysteine hydrolase has been crystallized in the presence of the reaction product adenosine. Diffraction data to 1.55 Å resolution were collected using synchrotron radiation.
S-Adenosyl-l-homocysteine hydrolase (SAHH; EC 3.3.1.1) catalyzes the reversible hydrolysis of S-adenosyl-l-homocysteine to adenosine and l-homo­cysteine. For crystallographic investigations, mouse SAHH (MmSAHH) was overexpressed in bacterial cells and crystallized using the hanging-drop vapour-diffusion method in the presence of the reaction product adenosine. X-ray diffraction data to 1.55 Å resolution were collected from an orthorhombic crystal form belonging to space group I222 with unit-cell parameters a = 100.64, b = 104.44, c = 177.31 Å. Structural analysis by molecular replacement is in progress.
doi:10.1107/S1744309110000771
PMCID: PMC2833045  PMID: 20208169
S-adenosyl-l-homocysteine hydrolase; SAHH
4.  Crystallization and preliminary X-ray crystallographic study of 1-deoxy-d-xylulose 5-­phosphate reductoisomerase from Plasmodium falciparum  
1-Deoxy-d-xylulose 5-phosphate reductoisomerase from P. falciparum has been crystallized in the presence of NADPH. Diffraction data to 1.85 Å resolution have been collected using synchrotron radiation.
The nonmevalonate pathway of isoprenoid biosynthesis present in Plasmodium falciparum is known to be an effective target for antimalarial drugs. The second enzyme of the nonmevalonate pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), catalyzes the transformation of 1-deoxy-d-xylulose 5-phosphate (DXP) to 2-C-methyl-d-erythritol 4-phosphate (MEP). For crystallographic studies, DXR from the human malaria parasite P. falciparum (PfDXR) was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method in the presence of NADPH. X-ray diffraction data to 1.85 Å resolution were collected from a monoclinic crystal form belonging to space group C2 with unit-cell parameters a = 168.89, b = 59.65, c = 86.58 Å, β = 117.8°. Structural analysis by molecular replacement is in progress.
doi:10.1107/S1744309110001739
PMCID: PMC2833050  PMID: 20208174
1-deoxy-d-xylulose 5-phosphate reductoisomerase; malaria; nonmevalonate pathway
5.  Crystallization and preliminary X-ray crystallographic study of phosphoglucose isomerase from Plasmodium falciparum  
Phosphoglucose isomerase from P. falciparum has been crystallized. Diffraction data to 1.8 Å resolution have been collected using synchrotron radiation.
Phosphoglucose isomerase (PGI) is a key enzyme in glycolysis and glycogenesis that catalyses the interconversion of glucose 6-phosphate (G6P) and fructose 6-­phosphate (F6P). For crystallographic studies, PGI from the human malaria parasite Plasmodium falciparum (PfPGI) was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data to 1.5 Å resolution were collected from an orthorhombic crystal form belonging to space group P212121 with unit-cell parameters a = 103.3, b = 104.1, c = 114.6 Å. Structural analysis by molecular replacement is in progress.
doi:10.1107/S1744309110001740
PMCID: PMC2833051  PMID: 20208175
glucose 6-phosphate isomerase; malaria; phosphoglucose isomerase; phosphohexose isomerase
6.  Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum 
Scientific Reports  2011;1:9.
The human malaria parasite Plasmodium falciparum is responsible for the deaths of more than a million people each year. Fosmidomycin has been proven to be efficient in the treatment of P. falciparum malaria by inhibiting 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway, which is absent in humans. However, the structural details of DXR inhibition by fosmidomycin in P. falciparum are unknown. Here, we report the crystal structures of fosmidomycin-bound complete quaternary complexes of PfDXR. Our study revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for an induced-fit movement to accommodate the bound inhibitor in the active site and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We expect the present structures to be useful guides for the design of more effective antimalarial compounds.
doi:10.1038/srep00009
PMCID: PMC3216497  PMID: 22355528
7.  Crystallization and preliminary X-ray analysis of AzoR (azoreductase) from Escherichia coli  
The crystallization and preliminary X-ray analysis of AzoR (azoreductase) have been performed.
AzoR (azoreductase), an FMN-dependent NADH-azo compound oxidoreductase from Escherichia coli, has been crystallized in the presence of FMN by the sitting-drop vapour-diffusion method using 2-propanol as a precipitant. AzoR catalyzes the reductive cleavage of azo groups. The crystals were found to diffract X-rays to beyond 1.8 Å resolution using a synchrotron-radiation source. The crystals belonged to the tetragonal space group P42212, with unit-cell parameters a = b = 92.2, c = 51.9 Å. The crystals are expected to contain one subunit of the homodimer in the asymmetric unit (V M = 2.6 Å3 Da−1) and to have a solvent content of 51.6%. Data sets were also collected from heavy-atom derivatives for use in phasing. As a result, crystals soaked in a solution containing K2PtCl4 for 23 d were found to be reasonably isomorphous to the native crystals and the presence of Pt atoms could be confirmed. The data sets from the native crystals and the K2PtCl4-derivatized crystals are being evaluated for use in structure determination by single isomorphous replacement with anomalous scattering.
doi:10.1107/S1744309105007918
PMCID: PMC1952434  PMID: 16511052
azoreductases

Results 1-7 (7)