Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Renal dysfunction in patients with thalassaemia 
British journal of haematology  2011;153(1):111-117.
Little is known about the effects of thalassaemia on the kidney. Characterization of underlying renal function abnormalities in thalassaemia is timely because the newer iron chelator, deferasirox, can be nephrotoxic. We aimed to determine the prevalence and correlates of renal abnormalities in thalassaemia patients, treated before deferasirox was widely available, using 24-h collections of urine. We calculated creatinine clearance and urine calcium-to-creatinine ratio and measured urinary β2-microglobulin, albumin, and protein. We used multivariate modelling to identify clinical, therapeutic, and laboratory predictors of renal dysfunction. One-third of thalassaemia patients who were not regularly transfused had abnormally high creatinine clearance. Regular transfusions were associated with a decrease in clearance (P = 0·004). Almost one-third of patients with thalassaemia had hypercalciuria, and regular transfusions were associated with an increase in the frequency and degree of hypercalciuria (P < 0·0001). Albuminuria was found in over half of patients, but was not consistently associated with transfusion therapy. In summary, renal hyperfiltration, hypercalciuria, and albuminuria are common in thalassaemia. Higher transfusion intensity is associated with lower creatinine clearance but more frequent hypercalciuria. The transfusion effect needs to be better understood. Awareness of underlying renal dysfunction in thalassaemia can inform decisions now about the use and monitoring of iron chelation.
PMCID: PMC4250090  PMID: 21332704
thalassaemia; kidney; creatinine clearance; hyperfiltration; hypercalciuria; albuminuria; proteinuria; transfusion
2.  Bone Disease in Thalassemia: A Frequent and Still Unresolved Problem 
Adults with β thalassemia major frequently have low BMD, fractures, and bone pain. The purpose of this study was to determine the prevalence of low BMD, fractures, and bone pain in all thalassemia syndromes in childhood, adolescence, and adulthood, associations of BMD with fractures and bone pain, and etiology of bone disease in thalassemia. Patients of all thalassemia syndromes in the Thalassemia Clinical Research Network, ≥6 yr of age, with no preexisting medical condition affecting bone mass or requiring steroids, participated. We measured spine and femur BMD and whole body BMC by DXA and assessed vertebral abnormalities by morphometric X-ray absorptiometry (MXA). Medical history by interview and review of medical records, physical examinations, and blood and urine collections were performed. Three hundred sixty-one subjects, 49% male, with a mean age of 23.2 yr (range, 6.1–75 yr), were studied. Spine and femur BMD Z-scores < −2 occurred in 46% and 25% of participants, respectively. Greater age, lower weight, hypogonadism, and increased bone turnover were strong independent predictors of low bone mass regardless of thalassemia syndrome. Peak bone mass was suboptimal. Thirty-six percent of patients had a history of fractures, and 34% reported bone pain. BMD was negatively associated with fractures but not with bone pain. Nine percent of participants had uniformly decreased height of several vertebrae by MXA, which was associated with the use of iron chelator deferoxamine before 6 yr of age. In patients with thalassemia, low BMD and fractures occur frequently and independently of the particular syndrome. Peak bone mass is suboptimal. Low BMD is associated with hypogonadism, increased bone turnover, and an increased risk for fractures.
PMCID: PMC3276604  PMID: 18505376
DXA; BMD; fractures; vertebral morphometry; thalassemia

Results 1-2 (2)