PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Functional Importance of eRNAs for Estrogen-dependent Transcriptional Activation Events 
Nature  2013;498(7455):516-520.
The functional importance of gene enhancers in regulated gene expression is well established(1–3). In addition to widespread transcription of long non-coding RNAs (ncRNA) in mammalian cells(4–6), bidirectional ncRNAs referred to as eRNAs are transcribed on enhancers(7–9). However, it has remained unclear whether these eRNAs are functional, or merely a reflection of enhancer activation. Here, we report that 17β-estradiol (E2)-bound estrogen receptor α (ERα) on enhancers causes a global increase in eRNA transcription on enhancers adjacent to E2-upregulated coding genes. These induced eRNAs, as functional transcripts, appear to exert important roles for the observed ligand-dependent induction of target coding genes, causing an increased strength of specific enhancer:promoter looping initiated by ERα binding. Cohesin, present on many ERα-regulated enhancers even prior to ligand treatment, apparently contributes to E2-dependent gene activation, at least in part, by stabilizing E2/ERα/eRNA-induced enhancer:promoter looping. Our data indicate that eRNAs are likely to exert important functions in many regulated programs of gene transcription.
doi:10.1038/nature12210
PMCID: PMC3718886  PMID: 23728302
2.  In vivo Regulation of the Allergic Response by the Interleukin 4 Receptor Alpha Chain Immunoreceptor Tyrosine-based Inhibitory Motif 
Background
Signaling by IL-4 and IL-13 via the IL-4 receptor alpha chain (IL-4Rα) plays a critical role in the pathology of allergic diseases. The IL-4Rα is endowed with an immunoreceptor tyrosine-based inhibitory motif (ITIM), centered on tyrosine 709 (Y709) in the cytoplasmic domain, that binds a number of regulatory phosphatases. The function of the ITIM in the in vivo regulation of IL-4R signaling remains unknown.
Objective
To determine the in vivo function of the IL-4Rα ITIM using mice in which the ITIM was inactivated by mutagenesis of the tyrosine Y709 residue into phenylalanine (F709).
Methods
F709 ITIM mutant mice were derived by knockin mutagenesis. Activation of intracellular signaling cascades by IL-4 and IL-13 was assessed by intracellular staining of phosphorylated signaling intermediates and by gene expression analysis. In vivo responses to allergic sensitization were assessed using models of allergic airway inflammation.
Results
The F709 mutation increased STAT6 phosphorylation by IL-4 and, disproportionately, by IL-13. This was associated with exaggerated Th2 polarization, enhanced alternative macrophage activation by IL-13, augmented basal and antigen-induced IgE responses and intensified allergen-induced eosinophilic airway inflammation and hyperreactivity.
Conclusions
These results point to a physiologic negative regulatory role for the Y709 ITIM in signaling via IL-4Rα, especially by IL-13.
doi:10.1016/j.jaci.2010.01.054
PMCID: PMC2889905  PMID: 20392476
IL-4 receptor; IL-4; IL-13; ITIM; SHP-1; IgE; Allergic Airway Inflammation; Asthma
3.  Large Deletions and Point Mutations Involving DOCK8 in the Autosomal Recessive Form of the Hyper-IgE Syndrome 
Background
The genetic etiologies of the hyper-IgE syndromes are diverse. Approximately 60-70% of patients with hyper-IgE syndrome have dominant mutations in STAT3, and a single patient was reported to have a homozygous TYK2 mutation. In the remaining hyper-IgE syndrome patients, the genetic etiology has not yet been identified.
Methods
We performed genome-wide single nucleotide polymorphism analysis for nine subjects with autosomal recessive hyper-IgE syndrome to locate copy number variations and homozygous haplotypes. Homozygosity mapping was performed with twelve subjects from seven additional families. The candidate gene was analyzed by genomic and cDNA sequencing to identify causative alleles in a total of 27 patients with autosomal recessive hyper-IgE syndrome.
Findings
Subtelomeric microdeletions were identified in six subjects at the terminus of chromosome 9p. In all patients the deleted interval involved DOCK8, encoding a protein implicated in the regulation of the actin cytoskeleton. Sequencing of subjects without large deletions revealed 16 patients from nine unrelated families with distinct homozygous mutations in DOCK8 causing premature termination, frameshift, splice site disruption, single exon- and micro-deletions. DOCK8 deficiency was associated with impaired activation of CD4+ and CD8+ T cells.
Interpretation
Autosomal recessive mutations in DOCK8 are responsible for many, though not all, cases of autosomal recessive hyper-IgE syndrome. DOCK8 disruption is associated with a phenotype of severe cellular immunodeficiency characterized by susceptibility to viral infections, atopic eczema, defective T cell activation and TH17 cell differentiation; and impaired eosinophil homeostasis and dysregulation of IgE.
doi:10.1016/j.jaci.2009.10.038
PMCID: PMC2818862  PMID: 20004785
Autosomal recessive hyper-IgE syndrome; human gene mutation; DOCK8; primary immunodeficiency; molluscum contagiosum; recurrent infection; T cells; TH17 cells; eosinophils; IgE regulation; copy number variations; genomic deletions
4.  LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression 
Experimental & Molecular Medicine  2008;40(5):514-522.
Tumor migration/invasion is the main cause of tumor progression and STAT3 is needed to enhance tumor migration/invasion by up-regulating MMP-9. Thus, agents that inhibit STAT3 activation may be used as an anticancer drug. We present herein that 6-methyl-2-propylimino-6, 7-dihydro-5H-benzo [1, 3]-oxathiol-4-one (LYR71) , a derivative of trimeric resveratrol, has an anticancer activity through inhibition of STAT3 activation. We found that LYR71 suppressed STAT3 activation and inhibited the expression and activity of MMP-9 in RANTES-stimulated breast cancer cells. In addition, LYR71 reduced RANTES-induced MMP-9 transcripts by blocking STAT3 recruitment, dissociating p300 and deacetylating histone H3 and H4 on the MMP-9 promoter. Furthermore, LYR71 inhibited tumor migration/invasion in RANTES-treated breast cancer cells and consequently blocked tumor progression in tumor-bearing mice. Taken together, the results of this study suggest that LYR71 can be therapeutically useful due to the inhibition effect of STAT3-mediated MMP-9 expression in breast cancer cells.
doi:10.3858/emm.2008.40.5.514
PMCID: PMC2679359  PMID: 18985009
chemokine CCL5; LYR71; matrix metalloproteinase 9; neoplasm metastasis; STAT3 transcription factor
5.  STAT3 inhibits the degradation of HIF-1α by pVHL-mediated ubiquitination 
Experimental & Molecular Medicine  2008;40(5):479-485.
Hypoxia-inducible factor 1α (HIF-1α) is rapidly degraded by the ubiquitin-proteasome pathway under normoxic conditions. Ubiquitination of HIF-1α is mediated by interaction with von Hippel-Lindau tumor suppressor protein (pVHL). In our previous report, we found that hypoxia-induced active signal transducer and activator of transcription3 (STAT3) accelerated the accumulation of HIF-1α protein and prolonged its half-life in solid tumor cells. However, its specific mechanisms are not fully understood. Thus, we examined the role of STAT3 in the mechanism of pVHL-mediated HIF-1α stability. We found that STAT3 interacts with C-terminal domain of HIF-1α and stabilizes HIF-1α by inhibition of pVHL binding to HIF-1α. The binding between HIF-1α and pVHL, negative regulator of HIF-1α stability, was interfered dose-dependently by overexpressed constitutive active STAT3. Moreover, we found that the enhanced HIF-1α protein levels by active STAT3 are due to decrease of poly-ubiquitination of HIF-1α protein via inhibition of interaction between pVHL and HIF-1α. Taken together, our results suggest that STAT3 decreases the pVHL-mediated ubiquitination of HIF-1α through competition with pVHL for binding to HIF-1α, and then stabilizes HIF-1α protein levels.
doi:10.3858/emm.2008.40.5.479
PMCID: PMC2679355  PMID: 18985005
anoxia; hypoxia-inducible factor1, α subunit; neoplasms; STAT3 transcription factor; ubiquitination; von Hippel-Lindau tumor suppressor protein

Results 1-5 (5)