Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  P7C3 Neuroprotective Chemicals Block Axonal Degeneration and Preserve Function after Traumatic Brain Injury 
Cell reports  2014;8(6):1731-1740.
The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to activate nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in nicotinamide adenine dinucleotide salvage. Initiation of daily treatment with our recently reported lead agent, P7C3-S243, one day after blast-mediated TBI blocks axonal degeneration and preserves normal synaptic activity, learning and memory, and motor coordination in mice. We additionally report persistent neurologic deficits and acquisition of an anxiety-like phenotype in untreated animals eight months after blast exposure. Optimized variants of P7C3 thus offer hope for identifying neuroprotective agents for conditions involving axonal damage, neuronal cell death, or both, such as occurs in TBI.
PMCID: PMC4206693  PMID: 25220467
2.  The Movement Kinematics and Learning Strategies Associated with Adopting Different Foci of Attention during Both Acquisition and Anxious Performance 
Research suggests that implicit strategies adopted during learning help prevent breakdown of automatic processes and subsequent performance decrements associated with the presence of pressure. According to the Constrained Action Hypothesis, automaticity of movement is promoted when adopting an external focus of attention. The purpose of the current experiment was to investigate if learning with an external focus of attention can enhance performance under subsequent pressure situations through promoting implicit learning and automaticity. Since previous research has generally used outcome measures of performance, the current study adopted measures of movement production. Specifically, we calculated within-subject variability in trajectory velocity and distance traveled every 10% of movement time. This detailed kinematic analysis allowed investigation into some of the previously unexplored mechanisms responsible for the benefits of adopting an external focus of attention. Novice participants performed a 2.5 m golf putt. Following a pre-test, participants were randomly assigned to one of three focus groups (internal, external, control). Participants then completed 400 acquisition trials over two consecutive days before being subjected to both a low anxiety and high anxiety (HA) transfer test. Dependent variables included variability, number of successful putts and mean radial error. Results revealed that variability was greater in the internal compared to the external and control groups. Putting performance revealed that all groups increased performance following acquisition. However, only the control group demonstrated a decrement in performance in the HA transfer test. These findings suggest that adopting an appropriate focus of attention during learning can prevent choking; with an external focus inhibiting the breakdown of automatic processes and an internal focus acting as a self-focus learning strategy and thus desensitizing individuals to anxiety effects.
PMCID: PMC3487420  PMID: 23130008
attentional focus; performance pressure; novice performers; motor skills; explicit learning
3.  Re-Expression of IGF-II Is Important for Beta Cell Regeneration in Adult Mice 
PLoS ONE  2012;7(9):e43623.
The key factors which support re-expansion of beta cell numbers after injury are largely unknown. Insulin-like growth factor II (IGF-II) plays a critical role in supporting cell division and differentiation during ontogeny but its role in the adult is not known. In this study we investigated the effect of IGF-II on beta cell regeneration.
Methodology/Principal Findings
We employed an in vivo model of ‘switchable’ c-Myc-induced beta cell ablation, pIns-c-MycERTAM, in which 90% of beta cells are lost following 11 days of c-Myc (Myc) activation in vivo. Importantly, such ablation is normally followed by beta cell regeneration once Myc is deactivated, enabling functional studies of beta cell regeneration in vivo. IGF-II was shown to be re-expressed in the adult pancreas of pIns-c-MycERTAM/IGF-II+/+ (MIG) mice, following beta cell injury. As expected in the presence of IGF-II beta cell mass and numbers recover rapidly after ablation. In contrast, in pIns-c-MycERTAM/IGF-II+/− (MIGKO) mice, which express no IGF-II, recovery of beta cell mass and numbers were delayed and impaired. Despite failure of beta cell number increase, MIGKO mice recovered from hyperglycaemia, although this was delayed.
Our results demonstrate that beta cell regeneration in adult mice depends on re-expression of IGF-II, and supports the utility of using such ablation-recovery models for identifying other potential factors critical for underpinning successful beta cell regeneration in vivo. The potential therapeutic benefits of manipulating the IGF-II signaling systems merit further exploration.
PMCID: PMC3436856  PMID: 22970135
4.  Quantifying the Improvement of Surrogate Indices of Hepatic Insulin Resistance Using Complex Measurement Techniques 
PLoS ONE  2012;7(6):e39029.
We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6±1.0 years, BMI 31.5±0.4 kg/m2; 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6–62H2] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39–56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r2 = 27–32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations.
PMCID: PMC3382235  PMID: 22761721
5.  A Simple Matter of Life and Death—The Trials of Postnatal Beta-Cell Mass Regulation 
Pancreatic beta-cells, which secrete the hormone insulin, are the key arbiters of glucose homeostasis. Defective beta-cell numbers and/or function underlie essentially all major forms of diabetes and must be restored if diabetes is to be cured. Thus, the identification of the molecular regulators of beta-cell mass and a better understanding of the processes of beta-cell differentiation and proliferation may provide further insight for the development of new therapeutic targets for diabetes. This review will focus on the principal hormones and nutrients, as well as downstream signalling pathways regulating beta-cell mass in the adult. Furthermore, we will also address more recently appreciated regulators of beta-cell mass, such as microRNAs.
PMCID: PMC3346985  PMID: 22577380
6.  WHIDE—a web tool for visual data mining colocation patterns in multivariate bioimages 
Bioinformatics  2012;28(8):1143-1150.
Motivation: Bioimaging techniques rapidly develop toward higher resolution and dimension. The increase in dimension is achieved by different techniques such as multitag fluorescence imaging, Matrix Assisted Laser Desorption / Ionization (MALDI) imaging or Raman imaging, which record for each pixel an N-dimensional intensity array, representing local abundances of molecules, residues or interaction patterns. The analysis of such multivariate bioimages (MBIs) calls for new approaches to support users in the analysis of both feature domains: space (i.e. sample morphology) and molecular colocation or interaction. In this article, we present our approach WHIDE (Web-based Hyperbolic Image Data Explorer) that combines principles from computational learning, dimension reduction and visualization in a free web application.
Results: We applied WHIDE to a set of MBI recorded using the multitag fluorescence imaging Toponome Imaging System. The MBI show field of view in tissue sections from a colon cancer study and we compare tissue from normal/healthy colon with tissue classified as tumor. Our results show, that WHIDE efficiently reduces the complexity of the data by mapping each of the pixels to a cluster, referred to as Molecular Co-Expression Phenotypes and provides a structural basis for a sophisticated multimodal visualization, which combines topology preserving pseudocoloring with information visualization. The wide range of WHIDE's applicability is demonstrated with examples from toponome imaging, high content screens and MALDI imaging (shown in the Supplementary Material).
Availability and implementation: The WHIDE tool can be accessed via the BioIMAX website; Login: whidetestuser; Password: whidetest.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3324520  PMID: 22390938
7.  RAMTaB: Robust Alignment of Multi-Tag Bioimages 
PLoS ONE  2012;7(2):e30894.
In recent years, new microscopic imaging techniques have evolved to allow us to visualize several different proteins (or other biomolecules) in a visual field. Analysis of protein co-localization becomes viable because molecules can interact only when they are located close to each other. We present a novel approach to align images in a multi-tag fluorescence image stack. The proposed approach is applicable to multi-tag bioimaging systems which (a) acquire fluorescence images by sequential staining and (b) simultaneously capture a phase contrast image corresponding to each of the fluorescence images. To the best of our knowledge, there is no existing method in the literature, which addresses simultaneous registration of multi-tag bioimages and selection of the reference image in order to maximize the overall overlap between the images.
Methodology/Principal Findings
We employ a block-based method for registration, which yields a confidence measure to indicate the accuracy of our registration results. We derive a shift metric in order to select the Reference Image with Maximal Overlap (RIMO), in turn minimizing the total amount of non-overlapping signal for a given number of tags. Experimental results show that the Robust Alignment of Multi-Tag Bioimages (RAMTaB) framework is robust to variations in contrast and illumination, yields sub-pixel accuracy, and successfully selects the reference image resulting in maximum overlap. The registration results are also shown to significantly improve any follow-up protein co-localization studies.
For the discovery of protein complexes and of functional protein networks within a cell, alignment of the tag images in a multi-tag fluorescence image stack is a key pre-processing step. The proposed framework is shown to produce accurate alignment results on both real and synthetic data. Our future work will use the aligned multi-channel fluorescence image data for normal and diseased tissue specimens to analyze molecular co-expression patterns and functional protein networks.
PMCID: PMC3280195  PMID: 22363510
8.  Deciphering c-MYC-regulated genes in two distinct tissues 
BMC Genomics  2011;12:476.
The transcription factor MYC is a critical regulator of diverse cellular processes, including both replication and apoptosis. Differences in MYC-regulated gene expression responsible for such opposing outcomes in vivo remain obscure. To address this we have examined time-dependent changes in global gene expression in two transgenic mouse models in which MYC activation, in either skin suprabasal keratinocytes or pancreatic islet β-cells, promotes tissue expansion or involution, respectively.
Consistent with observed phenotypes, expression of cell cycle genes is increased in both models (albeit enriched in β-cells), as are those involved in cell growth and metabolism, while expression of genes involved in cell differentiation is down-regulated. However, in β-cells, which unlike suprabasal keratinocytes undergo prominent apoptosis from 24 hours, there is up-regulation of genes associated with DNA-damage response and intrinsic apoptotic pathways, including Atr, Arf, Bax and Cycs. In striking contrast, this is not the case for suprabasal keratinocytes, where pro-apoptotic genes such as Noxa are down-regulated and key anti-apoptotic pathways (such as Igf1-Akt) and those promoting angiogenesis are up-regulated. Moreover, dramatic up-regulation of steroid hormone-regulated Kallikrein serine protease family members in suprabasal keratinocytes alone could further enhance local Igf1 actions, such as through proteolysis of Igf1 binding proteins.
Activation of MYC causes cell growth, loss of differentiation and cell cycle entry in both β-cells and suprabasal keratinocytes in vivo. Apoptosis, which is confined to β-cells, may involve a combination of a DNA-damage response and downstream activation of pro-apoptotic signalling pathways, including Cdc2a and p19Arf/p53, and downstream targets. Conversely, avoidance of apoptosis in suprabasal keratinocytes may result primarily from the activation of key anti-apoptotic signalling pathways, particularly Igf1-Akt, and induction of an angiogenic response, though intrinsic resistance to induction of p19Arf by MYC in suprabasal keratinocytes may contribute.
PMCID: PMC3206520  PMID: 21961992
9.  BioIMAX: A Web 2.0 approach for easy exploratory and collaborative access to multivariate bioimage data 
BMC Bioinformatics  2011;12:297.
Innovations in biological and biomedical imaging produce complex high-content and multivariate image data. For decision-making and generation of hypotheses, scientists need novel information technology tools that enable them to visually explore and analyze the data and to discuss and communicate results or findings with collaborating experts from various places.
In this paper, we present a novel Web2.0 approach, BioIMAX, for the collaborative exploration and analysis of multivariate image data by combining the webs collaboration and distribution architecture with the interface interactivity and computation power of desktop applications, recently called rich internet application.
BioIMAX allows scientists to discuss and share data or results with collaborating experts and to visualize, annotate, and explore multivariate image data within one web-based platform from any location via a standard web browser requiring only a username and a password. BioIMAX can be accessed at with the username "test" and the password "test1" for testing purposes.
PMCID: PMC3161928  PMID: 21777450
10.  Local isotropic phase symmetry measure for detection of beta cells and lymphocytes 
Diabetes can be associated with a reduction in functional β cell mass, which must be restored if the disease is to be cured or progress is to be arrested. To study the cell count, it is also necessary to determine the number of nuclei within the insulin stained area. It can take a single experimentalist several months to complete a single study of this kind, results of which may still be quite subjective. In this paper, we propose a framework based on a novel measure of local symmetry for detection of cells. The local isotropic phase symmetry measure (LIPSyM) is designed to give high values at or near the cell centers. We demonstrate the effectiveness of our algorithm for detection of two types of specific cells in histology images, cells in mouse pancreatic sections and lymphocytes in human breast tissue. Experimental results for these two problems show that our algorithm performs better than human experts for the former problem, and outperforms the best reported results for the latter.
PMCID: PMC3312708  PMID: 22811958
Beta cell mass assessment; cell nuclei detection; lymphocyte detection; local isotropic symmetry
11.  Non-β-cell progenitors of β-cells in pregnant mice 
Organogenesis  2010;6(2):125-133.
Pregnancy is a normal physiological condition in which the maternal β-cell mass increases rapidly about two-fold to adapt to new metabolic challenges. We have used a lineage tracing of β-cells to analyse the origin of new β-cells during this rapid expansion in pregnancy. Double transgenic mice bearing a tamoxifen-dependent Cre-recombinase construct under the control of a rat insulin promoter, together with a reporter Z/AP gene, were generated. Then, in response to a pulse of tamoxifen before pregnancy, β-cells in these animals were marked irreversibly and heritably with the human placental alkaline phosphatase (HP AP). First, we conclude that the lineage tracing system was highly specific for β-cells. Secondly, we scored the proportion of the β-cells marked with HP AP during a subsequent chase period in pregnant and non-pregnant females. We observed a dilution in this labeling index in pregnant animal pancreata, compared to nonpregnant controls, during a single pregnancy in the chase period. To extend these observations we also analysed the labeling index in pancreata of animals during the second of two pregnancies in the chase period. The combined data revealed statistically-significant dilution during pregnancy, indicating a contribution to new beta cells from a non-β-cell source. Thus for the first time in a normal physiological condition, we have demonstrated not only β-cell duplication, but also the activation of a non-β-cell progenitor population. Further, there was no transdifferentiation of β-cells to other cell types in a two and half month period following labeling, including the period of pregnancy.
PMCID: PMC2901816  PMID: 20885859
β-cells; pancreas; β-cell duplication; non-β-cell progenitor; pregnancy
12.  Brief inactivation of c-Myc is not sufficient for sustained regression of c-Myc-induced tumours of pancreatic islets and skin epidermis 
BMC Biology  2004;2:26.
Tumour regression observed in many conditional mouse models following oncogene inactivation provides the impetus to develop, and a platform to preclinically evaluate, novel therapeutics to inactivate specific oncogenes. Inactivating single oncogenes, such as c-Myc, can reverse even advanced tumours. Intriguingly, transient c-Myc inactivation proved sufficient for sustained osteosarcoma regression; the resulting osteocyte differentiation potentially explaining loss of c-Myc's oncogenic properties. But would this apply to other tumours?
We show that brief inactivation of c-Myc does not sustain tumour regression in two distinct tissue types; tumour cells in pancreatic islets and skin epidermis continue to avoid apoptosis after c-Myc reactivation, by virtue of Bcl-xL over-expression or a favourable microenvironment, respectively. Moreover, tumours progress despite reacquiring a differentiated phenotype and partial loss of vasculature during c-Myc inactivation. Interestingly, reactivating c-Myc in β-cell tumours appears to result not only in further growth of the tumour, but also re-expansion of the accompanying angiogenesis and more pronounced β-cell invasion (adenocarcinoma).
Given that transient c-Myc inactivation could under some circumstances produce sustained tumour regression, the possible application of this potentially less toxic strategy in treating other tumours has been suggested. We show that brief inactivation of c-Myc fails to sustain tumour regression in two distinct models of tumourigenesis: pancreatic islets and skin epidermis. These findings challenge the potential for cancer therapies aimed at transient oncogene inactivation, at least under those circumstances where tumour cell differentiation and alteration of epigenetic context fail to reinstate apoptosis. Together, these results suggest that treatment schedules will need to be informed by knowledge of the molecular basis and environmental context of any given cancer.
PMCID: PMC544575  PMID: 15613240

Results 1-12 (12)