PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Finding the Missing Link: Disulfide-containing proteins via a high-throughput proteomics approach 
Proteomics  2013;13(22):3245-3246.
Top-down proteomics have recently started to gain attention as a novel method to provide insight into the structure of proteins in their native state, specifically the number and location of disulfide bridges. However, previous techniques still relied on complex and time-consuming protein purification and reduction reactions to yield useful information. In this issue of Proteomics, Zhao et al. (High throughput Screening of Disulfide-Containing Proteins in a Complex Mixture, Proteomics 2013) devise a clever and rapid method for high-throughput determination of disulfides in proteins via reduction by tris(2-carboxyethyl)phosphine. Their work provides the foundation necessary to undertake more complex experiments in biological samples.
doi:10.1002/pmic.201300445
PMCID: PMC3923460  PMID: 24150840
Disulfide; Glutathionylation; Mass spectrometry; Post-translational Modification; Redox Proteomics; Redox Modifications
2.  Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids 
Purpose of review
Recent evidence has linked n-3 polyunsaturated fatty acid (PUFA) supplementation with dramatic alterations of mitochondrial phospholipid membranes and favorable changes in mitochondrial function. In the present review, we examine the novel effects of n-3 PUFA on mitochondria, with an emphasis on cardiac mitochondrial phospholipids.
Recent findings
There is growing evidence that dietary n-3 PUFA, particularly docosahexaenoic acid (DHA), has profound effects on mitochondrial membrane phospholipid composition and mitochondrial function. Supplementation with n-3 PUFA increases membrane phospholipid DHA and depletes arachidonic acid, and can increase cardiolipin, a tetra-acyl phospholipid that is unique to mitochondrial and essential for optimal mitochondrial function. Recent studies show that supplementation with DHA decreases propensity for cardiac mitochondria to undergo permeability transition, a catastrophic event often leading to cell death. This finding provides a potential mechanism for the cardioprotective effect of DHA. Interestingly, other n-3 PUFAs that modify membrane composition to a lesser extent have substantially less of an effect on mitochondria and do not appear to directly protect the heart.
Summary
Current data support a role for n-3 PUFA supplementation, particularly DHA, on mitochondria that are strongly associated with changes in mitochondrial phospholipid composition.
doi:10.1097/MCO.0b013e32834fdaf7
PMCID: PMC4067133  PMID: 22248591
3.  X-ROS signaling in heart and skeletal muscle: stretch-dependent local ROS regulates [Ca2+]i 
X-ROS signaling is a novel redox signaling pathway that links mechanical stress to changes in [Ca2+]i. This pathway is activated rapidly and locally within a muscle cell under physiological conditions, but can also contribute to Ca2+-dependent arrhythmia in heart and to the dystrophic phenotype in heart and skeletal muscle. Upon physiologic cellular stretch, microtubules serve as mechanotransducers to activate NADPH oxidase 2 in the transverse tubules and sarcolemmal membranes to produce reactive oxygen species (ROS). In heart, the ROS acts locally to activate ryanodine receptor Ca2+ release channels in the junctional sarcoplasmic reticulum, increasing the Ca2+ spark rate and “tuning” excitation-contraction coupling. In skeletal muscle, where Ca2+ sparks are not normally observed, the X-ROS signaling process is muted. However in muscular dystrophies, such as Duchenne Muscular Dystrophy and dysferlinopathy, X-ROS signaling operates at a high level and contributes to myopathy. Importantly, Ca2+ permeable stretch-activated channels are activated by X-ROS and contribute to skeletal muscle pathology. Here we review X-ROS signaling and mechanotransduction in striated muscle, and highlight important questions to drive future work on stretch-dependent signaling. We conclude that X-ROS provides an exciting mechanism for the mechanical control of redox and Ca2+ signaling, but much work is needed to establish its contribution to physiologic and pathophysiologic processes in diverse cell systems.
doi:10.1016/j.yjmcc.2012.11.011
PMCID: PMC3951390  PMID: 23220288
4.  Myocardial Infarction-induced N-terminal Fragment of Cardiac Myosin-binding Protein C (cMyBP-C) Impairs Myofilament Function in Human Myocardium* 
The Journal of Biological Chemistry  2014;289(13):8818-8827.
Background: Myocardial infarction (MI) leads to proteolytic cleavage of cMyBP-C (hC0C1f) and decreased contractility.
Results: hC0C1f can incorporate into the human cardiac sarcomere, depressing force generation and increasing tension cost.
Conclusion: Interaction between hC0C1f and both actin and α-tropomyosin causes disruption of intact cMyBP-C function.
Significance: Proteolytic cleavage of cMyBP-C is sufficient to cause contractile dysfunction following MI.
Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca2+ transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca2+ sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca2+ sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.
doi:10.1074/jbc.M113.541128
PMCID: PMC3979389  PMID: 24509847
Contractile Protein; Heart Failure; Myocardial Infarction; Protein Degradation; Protein-Protein Interactions
5.  Microtubules Underlie Dysfunction in Duchenne Muscular Dystrophy 
Science signaling  2012;5(236):10.1126/scisignal.2002829.
Duchenne muscular dystrophy (DMD) is a fatal X-linked degenerative muscle disease caused by the absence of the microtubule-associated protein dystrophin, which results in a disorganized and denser microtubule cytoskeleton. In addition, mechanotransduction-dependent activation of calcium (Ca2+) and reactive oxygen species (ROS) signaling underpins muscle degeneration in DMD. We show that in muscle from adult mdx mice, a model of DMD, a brief physiologic stretch elicited microtubule-dependent activation of NADPH (reduced-form nicotinamide adenine dinucleotide phosphate) oxidase–dependent production of ROS, termed X-ROS. Further, X-ROS amplified Ca2+ influx through stretch-activated channels in mdx muscle. Consistent with the importance of the microtubules to the dysfunction in mdx muscle, muscle cells with dense microtubule structure, such as those from adult mdx mice or from young wild-type mice treated with Taxol, showed increased X-ROS production and Ca2+ influx, whereas cells with a less dense microtubule network, such as young mdx or adult mdx muscle treated with colchicine or nocodazole, showed little ROS production or Ca2+ influx. In vivo treatments that disrupted the microtubule network or inhibited NADPH oxidase 2 reduced contraction-induced injury in adult mdx mice. Furthermore, transcriptome analysis identified increased expression of X-ROS–related genes in human DMD skeletal muscle. Together, these data show that microtubules are the proximate element responsible for the dysfunction in Ca2+ and ROS signaling in DMD and could be effective therapeutic targets for intervention.
doi:10.1126/scisignal.2002829
PMCID: PMC3835660  PMID: 22871609
6.  Improved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids 
PLoS ONE  2012;7(3):e34402.
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.
doi:10.1371/journal.pone.0034402
PMCID: PMC3316678  PMID: 22479624
7.  Mitofusin-2 Maintains Mitochondrial Structure and Contributes to Stress-Induced Permeability Transition in Cardiac Myocytes ▿ †  
Molecular and Cellular Biology  2011;31(6):1309-1328.
Mitofusin-2 (Mfn-2) is a dynamin-like protein that is involved in the rearrangement of the outer mitochondrial membrane. Research using various experimental systems has shown that Mfn-2 is a mediator of mitochondrial fusion, an evolutionarily conserved process responsible for the surveillance of mitochondrial homeostasis. Here, we find that cardiac myocyte mitochondria lacking Mfn-2 are pleiomorphic and have the propensity to become enlarged. Consistent with an underlying mild mitochondrial dysfunction, Mfn-2-deficient mice display modest cardiac hypertrophy accompanied by slight functional deterioration. The absence of Mfn-2 is associated with a marked delay in mitochondrial permeability transition downstream of Ca2+ stimulation or due to local generation of reactive oxygen species (ROS). Consequently, Mfn-2-deficient adult cardiomyocytes are protected from a number of cell death-inducing stimuli and Mfn-2 knockout hearts display better recovery following reperfusion injury. We conclude that in cardiac myocytes, Mfn-2 controls mitochondrial morphogenesis and serves to predispose cells to mitochondrial permeability transition and to trigger cell death.
doi:10.1128/MCB.00911-10
PMCID: PMC3067905  PMID: 21245373
8.  Dietary Supplementation with Docosahexaenoic Acid, but Not Eicosapentanoic Acid, Dramatically Alters Cardiac Mitochondrial Phospholipid Fatty Acid Composition and Prevents Permeability Transition 
Biochimica et biophysica acta  2010;1797(8):1555-1562.
Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the ω-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of ω-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.
doi:10.1016/j.bbabio.2010.05.007
PMCID: PMC3071681  PMID: 20471951
cardiac; eicosapentaenoic acid; docosahexaenoic acid; fish oil; heart; mitochondrial permeability transition pore
9.  The Cardioprotective Effects of Fish Oil During Pressure Overload Are Blocked by High Fat Intake 
Hypertension  2009;54(3):605-611.
Supplementation with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil may prevent development of heart failure through alterations in cardiac phospholipids that favorably impact inflammation and energy metabolism. A high-fat diet may block these effects in chronically stressed myocardium. Pathological left ventricle (LV) hypertrophy was generated by subjecting rats to pressure overload by constriction of the abdominal aorta. Animals were fed: (1) standard diet (10% of energy from fat), (2) standard diet with EPA+DHA (2.3% of energy intake as EPA+DHA), (3) high fat (60% fat); or (4) high fat with EPA+DHA. Pressure overload increased LV mass by ≈40% in both standard and high-fat diets without fish oil. Supplementation with fish oil increased their incorporation into cardiac phospholipids, and decreased the proinflammatory fatty acid arachidonic acid and urine thromboxane B2 with both the standard and high-fat diet. Linoleic acid and tetralinoloyl cardiolipin (an essential mitochondrial phospholipid) were decreased with pressure overload on standard diet, which was prevented by fish oil. Animals fed high-fat diet had decreased linoleic acid and tetralinoloyl cardiolipin regardless of fish oil supplemention. Fish oil limited LV hypertrophy on the standard diet, and prevented upregulation of fetal genes associated with heart failure (myosin heavy chain-β and atrial natriuetic factor). These beneficial effects of fish oil were absent in animals on the high-fat diet. In conclusion, whereas treatment with EPA+DHA prevented tetralinoloyl cardiolipin depletion, LV hypertrophy, and abnormal genes expression with pressure overload, these effects were absent with a high-fat diet.
doi:10.1161/HYPERTENSIONAHA.109.135806
PMCID: PMC3103889  PMID: 19597033
Omega-3 fatty acids; cardiac hypertrophy; heart failure; cardiolipin; phospolipids
10.  Dietary ω-3 Fatty Acids Alter Cardiac Mitochondrial Phospholipid Composition and Delay Ca2+-Induced Permeability Transition 
Consumption of ω-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA+DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA+DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospholipid composition, respiration, and sensitivity to mitochondrial permeability transition pore (MPTP) opening in normal and infarcted myocardium. Rats were subjected to sham surgery or myocardial infarction by coronary artery ligation (n=10–14), and fed a standard diet, or supplemented with EPA+DHA (2.3% of energy intake) for 12 weeks. EPA+DHA altered fatty acid composition of total mitochondrial phospholipids and cardiolipin by reducing arachidonic acid content and increasing DHA incorporation. EPA+DHA significantly increased calcium uptake capacity in both subsarcolemmal and intrafibrillar mitochondria from sham rats. This treatment effect persisted with the addition of cyclosporin A, and was not accompanied by changes in mitochondrial respiration or coupling, or cyclophilin D protein expression. Myocardial infarction resulted in heart failure as evidenced by LV dilation and contractile dysfunction. Infarcted LV myocardium had decreased mitochondrial protein yield and activity of mitochondrial marker enzymes, however respiratory function of isolated mitochondria was normal. EPA+DHA had no effect on LV function, mitochondrial respiration, or MPTP opening in rats with heart failure. In conclusion, dietary supplementation with EPA+DHA altered mitochondrial membrane phospholipid fatty acid composition in normal and infarcted hearts, but delayed MPTP opening only in normal hearts.
doi:10.1016/j.yjmcc.2009.08.014
PMCID: PMC2783943  PMID: 19703463
eicosapentaenoic acid; docosahexaenoic acid; myocardial infarction; mitochondrial permeability transition pore
11.  ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin 
Background
Pathological left ventricular (LV) hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA) up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1) assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2) evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart.
Methods
Wild type (WT) and adiponectin-/- mice underwent transverse aortic constriction (TAC) and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated.
Results
TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA.
Conclusion
These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.
doi:10.1186/1476-511X-9-95
PMCID: PMC2939588  PMID: 20819225
12.  Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction 
Cardiovascular Research  2008;81(2):319-327.
Aims
Clinical studies suggest that intake of ω-3 polyunsaturated fatty acids (ω-3 PUFA) may lower the incidence of heart failure. Dietary supplementation with ω-3 PUFA exerts metabolic and anti-inflammatory effects that could prevent left ventricle (LV) pathology; however, it is unclear whether these effects occur at clinically relevant doses and whether there are differences between ω-3 PUFA from fish [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and vegetable sources [α-linolenic acid (ALA)].
Methods and results
We assessed the development of LV remodelling and pathology in rats subjected to aortic banding treated with ω-3 PUFA over a dose range that spanned the intake of humans taking ω-3 PUFA supplements. Rats were fed a standard food or diets supplemented with EPA+DHA or ALA at 0.7, 2.3, or 7% of energy intake. Without supplementation, aortic banding increased LV mass and end-systolic and -diastolic volumes. ALA supplementation had little effect on LV remodelling and dysfunction. In contrast, EPA+DHA dose-dependently increased EPA and DHA, decreased arachidonic acid in cardiac membrane phospholipids, and prevented the increase in LV end-diastolic and -systolic volumes. EPA+DHA resulted in a dose-dependent increase in the anti-inflammatory adipokine adiponectin, and there was a strong correlation between the prevention of LV chamber enlargement and plasma levels of adiponectin (r = −0.78). Supplementation with EPA+DHA had anti-aggregatory and anti-inflammatory effects as evidenced by decreases in urinary thromboxane B2 and serum tumour necrosis factor-α.
Conclusion
Dietary supplementation with ω-3 PUFA derived from fish, but not from vegetable sources, increased plasma adiponectin, suppressed inflammation, and prevented cardiac remodelling and dysfunction under pressure overload conditions.
doi:10.1093/cvr/cvn310
PMCID: PMC2721645  PMID: 19015135
α-linolenic acid; Diet; Docosahexaenoic acid; Eicosapentaenoic acid; Heart failure

Results 1-12 (12)