Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  AMA recognition and structural integrity of the inner lipoyl domain of the E2 subunit of pyruvate dehydrogenase complex (PDC-E2)1 
Antimitochondrial autoantibodies (AMA), the serological hallmark of primary biliary cirrhosis (PBC) are directed against the lipoyl domain of the E2 subunit of pyruvate dehydrogenase (PDC-E2). However, comprehensive analysis of the amino acid residues of PDC-E2 lipoyl beta sheet with AMA specificity is lacking. Herein, we postulated that specific residues within the lipoyl domain are critical to AMA recognition by maintaining conformational integrity. We systematically replaced each of 19 residue peptides of the inner lipoyl domain with alanine and analyzed these mutants for reactivities against 60 PBC and 103 control sera. Based on these data, we then constructed mutants with 2, 3, or 4 replacements and, in addition, probed the structure of the substituted domains using thiol-specific spin labeling and electron paramagnetic resonance (EPR) of a 5Ile-> Ala and 12Ile->Ala double mutant. Single alanine replacement at 5Ile, 12Ile and 15Glu significantly reduced AMA recognition. In addition, mutants with 2, 3, or 4 replacements at 5Ile, 12Ile and 15Glu reduced AMA reactivity even further. Indeed, EPR reveals a highly flexible structure within the 5Ile and 12Ile double-alanine mutant. Autoreactivity is largely focused on specific residues in the PDC-E2 lipoyl domain critical in maintaining the lipoyl loop conformation necessary for AMA recognition. Collectively, the AMA binding studies and EPR analysis demonstrate the necessity of the lipoyl beta sheet structural conformation in anti-PDC-E2 recognition.
PMCID: PMC3759514  PMID: 23894195
Autoantibodies; primary biliary cirrhosis; xenobiotics; conformational structure
2.  Environment and Primary Biliary Cirrhosis: Electrophilic Drugs and the Induction of AMA 
Journal of autoimmunity  2013;41:79-86.
Environmental stimulation is a major factor in the initiation and perpetuation of autoimmune diseases. We have addressed this issue and focused on primary biliary cirrhosis (PBC), an autoimmune disease of the liver. Immunologically, PBC is distinguished by immune mediated destruction of the intra hepatic bile ducts and the presence of high titer antimitochondrial autoantibodies (AMA) directed against a highly specific epitope within the lipoic acid binding domain of the pyruvate dehydrogenase E2 subunit (PDC-E2). We submit that the uniqueness of AMA epitope specificity and the conformational changes of the PDC-E2 lipoyl domain during physiological acyl transfer could be the lynchpin to the etiology of PBC and postulate that chemical xenobiotics modification of the lipoyl domain of PDC-E2 is sufficient to break self-tolerance, with subsequent production of AMA in patients with PBC. Indeed, using quantitative structure activity relationship (QSAR) analysis on a peptide-xenobiotic conjugate microarray platform, we have demonstrated that when the lipoyl domain of PDC-E2 was modified with specific synthetic small molecule lipoyl mimics, the ensuing structures displayed highly specific reactivity to PBC sera, at levels often higher than the native PDC-E2 molecule. Hereby, we discuss our recent QSAR analysis data on specific AMA reactivity against a focused panel of lipoic acid mimic in which the lipoyl di-sulfide bond are modified. Furthermore, data on the immunological characterization of antigen and Ig isotype specificities against one such lipoic acid mimic; 6,8-bis(acetylthio)octanoic acid (SAc), when compared with rPDC-E2, strongly support a xenobiotic etiology in PBC. This observation is of particular significance in that approximately one third of patients who have taken excessive acetaminophen (APAP) developed AMA with same specificity as patients with PBC, suggesting that the lipoic domain are a target of APAP electrophilic metabolites such as NAPQI. We submit that in genetically susceptible hosts, electrophilic modification of lipoic acid in PDC-E2 by acetaminophen or similar drugs can facilitate loss of tolerance and lead to the development of PBC.
PMCID: PMC3622763  PMID: 23352659
3.  Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-β receptor type II mouse 
Journal of autoimmunity  2013;41:111-119.
Dominant negative TGF-β receptor II (dnTGF-βRII) mice spontaneously develop an autoimmune cholangitis resembling human primary biliary cirrhosis (PBC). Interestingly, the dominant negative TGF-β receptor is expressed by both CD4+ and CD8+ T cells and leads to greatly reduced (but not absent) TGF-β signaling resulting in T cell intrinsic cell mediated autoimmunity. However, the mechanisms of the T cell dysregulation remain unclear. Recently it has been shown that TGF-β signaling is intimately involved with miRNA biogenesis and control. Herein we show that lack of T cell TGF-β signaling leads to down regulation of T cell miRNAs but upregulation of the key inflammatory miRNA 21. Furthermore, the expression of miR-21 from hepatic effector CD8+ T cells is significantly higher than in the same subsets isolated from spleen and mesenteric lymph nodes of the dnTGF-βRII mice. Previous studies indicate that miR-21 increases the synthesis of IFN-γ and IL-17A by T cells and suppresses apoptosis via programmed cell death protein 4 (PDCD4). Data presented herein demonstrate that transfecting w.t. B6 T cell subsets with miR-21 resulted in upregulation of the inflammatory cytokines TNF-α and IFN-γ, thus partly replicating the dnTGF-βRII T cell phenotype. In conclusion, these data suggest miR-21 plays a critical role in the production of pro-inflammatory cytokines in dnTGFβRII mice, which could be a contributing factor for the development of the organ-specific autoimmune cholangitis and colitis in this murine model of human PBC.
PMCID: PMC3622842  PMID: 23395552
Primary biliary cirrhosis; inflammatory bowel disease; autoimmunity; cholangitis; colitis; microRNA; miR-21
4.  Electrophile-Modified Lipoic Derivatives of PDC-E2 Elicits Anti-mitochondrial Antibody Reactivity 
Journal of autoimmunity  2011;37(3):209-216.
Our laboratory has hypothesized that xenobiotic modification of the native lipoyl moiety of the major mitochondrial autoantigen, the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), may lead to loss of self-tolerance in primary biliary cirrhosis (PBC). This thesis is based on the finding of readily detectable levels of immunoreactivity of PBC sera against extensive panels of protein microarrays containing mimics of the inner lipoyl domain of PDC-E2 and subsequent quantitative structure-activity relationships (QSARs). Importantly, we have demonstrated that murine immunization with one such mimic, 2-octynoic acid coupled to bovine serum albumin (BSA), induces antimitochondrial antibodies (AMAs) and cholangitis. Based upon these data, we have focused on covalent modifications of the lipoic acid disulfide ring and subsequent analysis of such xenobiotics coupled to a 15mer of PDC-E2 for immunoreactivity against a broad panel of sera from patients with PBC and controls. Our results demonstrate that AMA-positive PBC sera demonstrate marked reactivity against 6,8-bis(acetylthio)octanoic acid, implying that chemical modification of the lipoyl ring, i.e. disruption of the S-S disulfide, renders lipoic acid to its reduced form that will promote xenobiotic modification. This observation is particularly significant in light of the function of the lipoyl1oiety in electron transport of which the catalytic disulfide constantly opens and closes and, thus, raises the intriguing thesis that common electrophilic agents, i.e. acetaminophen or non-steroidal anti-inflammatory drugs (NSAIDs), may lead to xenobiotic modification in genetically susceptible individuals that results in the generation of AMAs and ultimately clinical PBC.
PMCID: PMC3206141  PMID: 21763105
5.  The effects of Spirulina on anemia and immune function in senior citizens 
Anemia and immunological dysfunction (i.e. immunosenescence) are commonly found in older subjects and nutritional approaches are sought to counteract these phenomena. Spirulina is a filamentous and multicellular bule-green alga capable of reducing inflammation and also manifesting antioxidant effects. We hypothesized that Spirulina may ameliorate anemia and immunosenescence in senior citizens with a history of anemia. We enrolled 40 volunteers of both sexes with an age of 50 years or older who had no history of major chronic diseases. Participants took a Spirulina supplementation for 12 weeks and were administered comprehensive dietary questionnaires to determine their nutritional regimen during the study. Complete cell count (CCC) and indoleamine 2,3-dioxygenase (IDO) enzyme activity, as a sign of immune function, were determined at baseline and weeks 6 and 12 of supplementation. Thirty study participants completed the entire study and the data obtained were analyzed. Over the 12-week study period, there was a steady increase in average values of mean corpuscular hemoglobin in subjects of both sexes. In addition, mean corpuscular volume and mean corpuscular hemoglobin concentration also increased in male participants. Older women appeared to benefit more rapidly from Spirulina supplements. Similarly, the majority of subjects manifested increased IDO activity and white blood cell count at 6 and 12 weeks of Spirulina supplementation. Spirulina may ameliorate anemia and immunosenescence in older subjects. We encourage large human studies to determine whether this safe supplement could prove beneficial in randomized clinical trials.
PMCID: PMC4012879  PMID: 21278762
functional food; immunosenescence; red blood cell; IDO
6.  Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes 
Primary sclerosing cholangitis (PSC) is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA) from peripheral blood mononuclear cells (PBMC) was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6) and membrane-spanning 4-domains, subfamily A (ms4a) were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5) was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.
PMCID: PMC2270783  PMID: 17162367
7.  SNP Analysis of Genes Implicated in T Cell Proliferation in Primary Biliary Cirrhosis 
Previous studies on primary biliary cirrhosis (PBC) have focused on the role of T lymphocytes as potential effectors of tissue injury. We hypothesized that single nucleotide polymorphisms (SNPs) of genes involved in lymphocyte proliferation would be responsible for uncontrolled expansion of T cells and autoreactivity. To address this, we genotyped DNA from 154 patients with PBC and 166 ethnically matched healthy controls for SNPs of five candidate genes (60G/A CTLA-4, 1858 C/T LYP, -IVS9 C/T foxp3, p1323 C/G ICOS and -9606 T/C CD25) using a TaqMan assay.
We report herein a statistically significant decrease in homozygosity rate for the 60A⋆CTLA-4 allele in patients with PBC compared to controls (p = 0.0411). Moreover, we found a significant association of the same allele and of the LYP⋆T allele with anti-mitochondrial antibody (AMA) serum negativity (p = 0.0304 and 0.0094, respectively). No association between any of the other studied SNPs and PBC susceptibility, progression, or AMA status was observed. In conclusion, given the high prevalence of SNPs in CTLA-4 detected in numerous autoimmune diseases, we encourage a more detailed genetic analysis of this candidate gene. Further, although obtained from a limited number of AMA-negative subjects, our data suggest a potential genetic heterogeneity for this specific subgroup of patients with PBC.
PMCID: PMC2270736  PMID: 16584111
8.  PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina) PBMC 
Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs) Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP), 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169), a model immunotoxic PCB, or DMSO (vehicle control). Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part) by disruption of T cell receptor (TCR) signaling and cytokine production.
PMCID: PMC2270727  PMID: 16050139
9.  Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina) Lymphocytes 
Protein kinases (PKs) play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs), successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine) kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK) and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression.
PMCID: PMC2270707  PMID: 15330452
10.  Geographic Clusters of Primary Biliary Cirrhosis 
Genetic and environmental factors have been widely suggested to contribute to the pathogenesis of primary biliary cirrhosis (PBC), an autoimmune disease of unknown etiology leading to destruction of small bile ducts. Interestingly, epidemiologic data indicate a variable prevalence of the disease in different geographical areas. The study of clusters of PBC may provide clues as to possible triggers in the induction of immunopathology. We report herein four such unique PBC clusters that suggest the presence of both genetic and environmental factors in the induction of PBC. The first cluster is represented by a family of ten siblings of Palestinian origin that have an extraordinary frequency of PBC (with 5/8 sisters having the disease). Second, we describe the cases of a husband and wife, both having PBC. A family in which PBC was diagnosed in two genetically unrelated individuals, who lived in the same household, represents the third cluster. Fourth, we report a high prevalence of PBC cases in a very small area in Alaska. Although these data are anedoctal, the study of a large number of such clusters may provide a tool to estimate the roles of genetics and environment in the induction of autoimmunity.
PMCID: PMC2485422  PMID: 14768943
11.  Developmental Considerations of Sperm Protein 17 Gene Expression in Rheumatoid Arthritis Synoviocytes 
Developmental Immunology  2002;9(2):97-102.
Rheumatoid arthritis (RA) is an autoimmune disease characterized by proliferative synovial tissue. We used mRNA differential display and library subtraction to compare mRNA expression in RA and osteoarthritis (OA) synoviocytes. We initially compared the mRNA expression patterns in 1 female RA and 1 OA synovia and found a differentially expressed 350 bp transcript in the RA synoviocytes which was, by sequence analysis, 100% homologous to sperm protein 17 (Sp17). Moreover, the Sp17 transcript was found differentially expressed in a RA synovial library that was subtracted with an OA synovial library. Using specific primers for full length Sp17, a 1.1 kb transcript was amplified from the synoviocytes of 7 additional female RA patients, sequenced and found to 100% homologous to Sp17. Thus, we found the unexpected expression of Sp17, a thought to be gamete-specific protein, in the synoviocytes of 8/8 female RA patients in contrast to control OA synoviocytes. Interestingly, Sp17's structural relationship with cell-binding and recognition proteins, suggests that Sp17 may function in cell-cell recognition and signaling in the RA synoviocyte. Further, Sp17 could have a significant regulatory role in RA synoviocyte gene transcription and/or signal transduction. Thus, Sp17 could have an important role in RA synoviocyte proliferation or defective apoptosis. Finally, the presence of Sp17 in synoviocytes has interesting developmental considerations.
PMCID: PMC2276097  PMID: 12739786

Results 1-11 (11)