Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Sulfate-Driven Elemental Sparing Is Regulated at the Transcriptional and Posttranscriptional Levels in a Filamentous Cyanobacterium▿ †  
Journal of Bacteriology  2011;193(6):1449-1460.
Sulfur is an essential nutrient that can exist at growth-limiting concentrations in freshwater environments. The freshwater cyanobacterium Fremyella diplosiphon (also known as Tolypothrix sp. PCC 7601) is capable of remodeling the composition of its light-harvesting antennae, or phycobilisomes, in response to changes in the sulfur levels in its environment. Depletion of sulfur causes these cells to cease the accumulation of two forms of a major phycobilisome protein called phycocyanin and initiate the production of a third form of phycocyanin, which possesses a minimal number of sulfur-containing amino acids. Since phycobilisomes make up approximately 50% of the total protein in these cells, this elemental sparing response has the potential to significantly influence the fitness of this species under low-sulfur conditions. This response is specific for sulfate and occurs over the physiological range of sulfate concentrations likely to be encountered by this organism in its natural environment. F. diplosiphon has two separate sulfur deprivation responses, with low sulfate levels activating the phycobilisome remodeling response and low sulfur levels activating the chlorosis or bleaching response. The phycobilisome remodeling response results from changes in RNA abundance that are regulated at both the transcriptional and posttranscriptional levels. The potential of this response, and the more general bleaching response of cyanobacteria, to provide sulfur-containing amino acids during periods of sulfur deprivation is examined.
PMCID: PMC3067615  PMID: 21239582
2.  Functional Characterization of a Cyanobacterial OmpR/PhoB Class Transcription Factor Binding Site Controlling Light Color Responses ▿  
Journal of Bacteriology  2010;192(22):5923-5933.
Complementary chromatic acclimation (CCA) allows many cyanobacteria to change the composition of their light-harvesting antennae for maximal absorption of different wavelengths of light. In the freshwater species Fremyella diplosiphon, this process is controlled by the ratio of red to green light and allows the differential regulation of two subsets of genes in the genome. This response to ambient light color is controlled in part by a two-component system that includes a phytochrome class photoreceptor and a response regulator with an OmpR/PhoB class DNA binding domain called RcaC. During growth in red light, RcaC is able to simultaneously activate expression of red light-induced genes and repress expression of green light-induced genes through binding to the L box promoter element. Here we investigate how the L box functions as both an activator and a repressor under the same physiological conditions by analyzing the effects of changing the position, orientation, and sequence of the L box. We demonstrate that changes in the local sequences surrounding the L box affect the strength of its activity and that the activating and repressing functions of the L box are orientation dependent. Also, the spacing between the L box and the transcription start site is critical for it to work as an activator, while its repressing role during light regulation requires additional upstream and downstream DNA sequence elements. The latter result suggests that the repressing function of RcaC requires it to operate in association with multiple additional DNA binding proteins, at least one of which is functioning as an activator.
PMCID: PMC2976440  PMID: 20833804
3.  Abundance Changes of the Response Regulator RcaC Require Specific Aspartate and Histidine Residues and Are Necessary for Normal Light Color Responsiveness▿  
Journal of Bacteriology  2008;190(21):7241-7250.
RcaC is a large, complex response regulator that controls transcriptional responses to changes in ambient light color in the cyanobacterium Fremyella diplosiphon. The regulation of RcaC activity has been shown previously to require aspartate 51 and histidine 316, which appear to be phosphorylation sites that control the DNA binding activity of RcaC. All available data suggest that during growth in red light, RcaC is phosphorylated and has relatively high DNA binding activity, while during growth in green light RcaC is not phosphorylated and has less DNA binding activity. RcaC has also been found to be approximately sixfold more abundant in red light than in green light. Here we demonstrate that the light-controlled abundance changes of RcaC are necessary, but not sufficient, to direct normal light color responses. RcaC abundance changes are regulated at both the RNA and protein levels. The RcaC protein is significantly less stable in green light than in red light, suggesting that the abundance of this response regulator is controlled at least in part by light color-dependent proteolysis. We provide evidence that the regulation of RcaC abundance does not depend on any RcaC-controlled process but rather depends on the presence of the aspartate 51 and histidine 316 residues that have previously been shown to control the activity of this protein. We propose that the combination of RcaC abundance changes and modification of RcaC by phosphorylation may be necessary to provide the dynamic range required for transcriptional control of RcaC-regulated genes.
PMCID: PMC2580696  PMID: 18757544
4.  AplA, a Member of a New Class of Phycobiliproteins Lacking a Traditional Role in Photosynthetic Light Harvesting 
Journal of Bacteriology  2004;186(21):7420-7428.
All known phycobiliproteins have light-harvesting roles during photosynthesis and are found in water-soluble phycobilisomes, the light-harvesting complexes of cyanobacteria, cyanelles, and red algae. Phycobiliproteins are chromophore-bearing proteins that exist as heterodimers of α and β subunits, possess a number of highly conserved amino acid residues important for dimerization and chromophore binding, and are invariably 160 to 180 amino acids long. A new and unusual group of proteins that is most closely related to the allophycocyanin members of the phycobiliprotein superfamily has been identified. Each of these proteins, which have been named allophycocyanin-like (Apl) proteins, apparently contains a 28-amino-acid extension at its amino terminus relative to allophycocyanins. Apl family members possess the residues critical for chromophore interactions, but substitutions are present at positions implicated in maintaining the proper α-β subunit interactions and tertiary structure of phycobiliproteins, suggesting that Apl proteins are able to bind chromophores but fail to adopt typical allophycocyanin conformations. AplA isolated from the cyanobacterium Fremyella diplosiphon contained a covalently attached chromophore and, although present in the cell under a number of conditions, was not detected in phycobilisomes. Thus, Apl proteins are a new class of photoreceptors with a different cellular location and structure than any previously described members of the phycobiliprotein superfamily.
PMCID: PMC523187  PMID: 15489454
5.  Genomic DNA Microarray Analysis: Identification of New Genes Regulated by Light Color in the Cyanobacterium Fremyella diplosiphon 
Journal of Bacteriology  2004;186(13):4338-4349.
Many cyanobacteria use complementary chromatic adaptation to efficiently utilize energy from both green and red regions of the light spectrum during photosynthesis. Although previous studies have shown that acclimation to changing light wavelengths involves many physiological responses, research to date has focused primarily on the expression and regulation of genes that encode proteins of the major photosynthetic light-harvesting antennae, the phycobilisomes. We have used two-dimensional gel electrophoresis and genomic DNA microarrays to expand our understanding of the physiology of acclimation to light color in the cyanobacterium Fremyella diplosiphon. We found that the levels of nearly 80 proteins are altered in cells growing in green versus red light and have cloned and positively identified 17 genes not previously known to be regulated by light color in any species. Among these are homologs of genes present in many bacteria that encode well-studied proteins lacking clearly defined functions, such as tspO, which encodes a tryptophan-rich sensory protein, and homologs of genes encoding proteins of clearly defined function in many species, such as nblA and chlL, encoding phycobilisome degradation and chlorophyll biosynthesis proteins, respectively. Our results suggest novel roles for several of these gene products and highly specialized, unique uses for others.
PMCID: PMC421618  PMID: 15205436
6.  A Turquoise Mutant Genetically Separates Expression of Genes Encoding Phycoerythrin and Its Associated Linker Peptides 
Journal of Bacteriology  2002;184(4):962-970.
During complementary chromatic adaptation (CCA), cyanobacterial light harvesting structures called phycobilisomes are restructured in response to ambient light quality shifts. Transcription of genes encoding components of the phycobilisome is differentially regulated during this process: red light activates cpcB2A2, whereas green light coordinately activates the cpeCDE and cpeBA operons. Three signal transduction components that regulate CCA have been isolated to date: a sensor-photoreceptor (RcaE) and two response regulators (RcaF and RcaC). Mutations in the genes encoding these components affect the accumulation of both cpcB2A2 and cpeBA gene products. We have isolated and characterized a new pigmentation mutant called Turquoise 1. We demonstrate that this mutant phenotype is due to a dramatic decrease in cpeBA transcript abundance and results from a lesion in the cpeR gene. However, in this mutant cpeCDE RNA levels remain near those found in wild-type cells. Our results show that the coordinate regulation of cpeBA and cpeCDE by green light can be uncoupled by the loss of CpeR, and we furnish the first genetic evidence that different regulatory mechanisms control these two operons. Sequence analysis of CpeR reveals that it shares limited sequence similarity to members of the PP2C class of protein serine/threonine phosphatases. We also demonstrate that cpeBA and cpeCDE retain light quality responsiveness in a mutant lacking the RcaE photoreceptor. This provides compelling evidence for the partial control of CCA through an as-yet-uncharacterized second light quality sensing system.
PMCID: PMC134809  PMID: 11807056
7.  Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511 
BMC Microbiology  2010;10:204.
The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation.
The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure.
Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes.
PMCID: PMC2921402  PMID: 20670397

Results 1-7 (7)