PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("kayes, Emrul")
1.  Evaluation of Genome Sequencing Quality in Selected Plant Species Using Expressed Sequence Tags 
PLoS ONE  2013;8(7):e69890.
Background
With the completion of genome sequencing projects for more than 30 plant species, large volumes of genome sequences have been produced and stored in online databases. Advancements in sequencing technologies have reduced the cost and time of whole genome sequencing enabling more and more plants to be subjected to genome sequencing. Despite this, genome sequence qualities of multiple plants have not been evaluated.
Methodology/Principal Finding
Integrity and accuracy were calculated to evaluate the genome sequence quality of 32 plants. The integrity of a genome sequence is presented by the ratio of chromosome size and genome size (or between scaffold size and genome size), which ranged from 55.31% to nearly 100%. The accuracy of genome sequence was presented by the ratio between matched EST and selected ESTs where 52.93% ∼ 98.28% and 89.02% ∼ 98.85% of the randomly selected clean ESTs could be mapped to chromosome and scaffold sequences, respectively. According to the integrity, accuracy and other analysis of each plant species, thirteen plant species were divided into four levels. Arabidopsis thaliana, Oryza sativa and Zea mays had the highest quality, followed by Brachypodium distachyon, Populus trichocarpa, Vitis vinifera and Glycine max, Sorghum bicolor, Solanum lycopersicum and Fragaria vesca, and Lotus japonicus, Medicago truncatula and Malus × domestica in that order. Assembling the scaffold sequences into chromosome sequences should be the primary task for the remaining nineteen species. Low GC content and repeat DNA influences genome sequence assembly.
Conclusion
The quality of plant genome sequences was found to be lower than envisaged and thus the rapid development of genome sequencing projects as well as research on bioinformatics tools and the algorithms of genome sequence assembly should provide increased processing and correction of genome sequences that have already been published.
doi:10.1371/journal.pone.0069890
PMCID: PMC3726750  PMID: 23922843
2.  Identification of microRNAs from Amur grape (vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics 
BMC Genomics  2012;13:122.
Background
MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species.
Results
A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism.
Conclusions
Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
doi:10.1186/1471-2164-13-122
PMCID: PMC3353164  PMID: 22455456
Amur grape; microRNA; Sequences evolution; Solexa sequencing; miR-RACE; qRT-PCR

Results 1-2 (2)