PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  MIRAGE: The minimum information required for a glycomics experiment 
Glycobiology  2014;24(5):402-406.
The MIRAGE (minimum information required for a glycomics experiment) initiative was founded in Seattle, WA, in November 2011 in order to develop guidelines for reporting the qualitative and quantitative results obtained by diverse types of glycomics analyses, including the conditions and techniques that were applied to prepare the glycans for analysis and generate the primary data along with the tools and parameters that were used to process and annotate this data. These guidelines must address a broad range of issues, as glycomics data are inherently complex and are generated using diverse methods, including mass spectrometry (MS), chromatography, glycan array-binding assays, nuclear magnetic resonance (NMR) and other rapidly developing technologies. The acceptance of these guidelines by scientists conducting research on biological systems in which glycans have a significant role will facilitate the evaluation and reproduction of glycomics experiments and data that is reported in scientific journals and uploaded to glycomics databases. As a first step, MIRAGE guidelines for glycan analysis by MS have been recently published (Kolarich D, Rapp E, Struwe WB, Haslam SM, Zaia J., et al. 2013. The minimum information required for a glycomics experiment (MIRAGE) project – Improving the standards for reporting mass spectrometry-based glycoanalytic data. Mol. Cell Proteomics. 12:991–995), allowing them to be implemented and evaluated in the context of real-world glycobiology research. In this paper, we set out the historical context, organization structure and overarching objectives of the MIRAGE initiative.
doi:10.1093/glycob/cwu018
PMCID: PMC3976285  PMID: 24653214
2.  The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis 
Introduction
Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS.
Methods
Podoplanin expression in human synovial tissue from 18 RA patients and nine osteoarthritis (OA) patients was assessed by immunohistochemistry and confirmed by Western blot analysis. The expression was related to markers of synoviocytes and myofibroblasts detected by using confocal immunofluoresence microscopy. Expression of podoplanin, with or without the addition of proinflammatory cytokines and growth factors, in primary human FLS was evaluated by using flow cytometry.
Results
Podoplanin was highly expressed in cadherin-11-positive cells throughout the synovial lining layer in RA. The expression was most pronounced in areas with lining layer hyperplasia and high matrix metalloproteinase 9 expression, where it coincided with upregulation of α-smooth muscle actin (α-sma). The synovium in OA was predominantly podoplanin-negative. Podoplanin was expressed in 50% of cultured primary FLSs, and the expression was increased by interleukin 1β, tumour necrosis factor α and transforming growth factor β receptor 1.
Conclusions
Here we show that podoplanin is highly expressed in FLSs of the invading synovial tissue in RA. The concomitant upregulation of α-sma and podoplanin in a subpopulation of FLSs indicates a myofibroblast phenotype. Proinflammatory mediators increased the podoplanin expression in cultured RA-FLS. We conclude that podoplanin might be involved in the synovial tissue transformation and increased migratory potential of activated FLSs in RA.
doi:10.1186/ar3274
PMCID: PMC3132020  PMID: 21385358
3.  Deleted in Malignant Brain Tumors-1 Protein (DMBT1): A Pattern Recognition Receptor with Multiple Binding Sites 
Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1SAG), and lung glycoprotein-340 (DMBT1GP340) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.
doi:10.3390/ijms1112521
PMCID: PMC3100851  PMID: 21614203
dental caries; innate immunity; mucosal protection; SRCR domains

Results 1-3 (3)