PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion 
The mechanisms by which parathyroid hormone (PTH) produces anemia, are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+-sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null and Ca2+-sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood and volume regulatory systems were determined by plasma membrane K+ fluxes and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population and increased K+ permeability, which were in part mediated by activation of the K+/Cl− cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+-sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+-sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis.
doi:10.1111/ejh.12110
PMCID: PMC3689863  PMID: 23528155
Parathyroid Hormone; Calcium-sensor receptor; erythrocytes; K+ channels
2.  Deletion of the Nuclear Localization Sequences and C-Terminus of PTHrP Impairs Embryonic Mammary Development but also Inhibits PTHrP Production 
PLoS ONE  2014;9(5):e90418.
Parathyroid hormone-related protein (PTHrP) can be secreted from cells and interact with its receptor, the Type 1 PTH/PTHrP Receptor (PTHR1) in an autocrine, paracrine or endocrine fashion. PTHrP can also remain inside cells and be transported into the nucleus, where its functions are unclear, although recent experiments suggest that it may broadly regulate cell survival and senescence. Disruption of either the PTHrP or PTHR1 gene results in many abnormalities including a failure of embryonic mammary gland development in mice and in humans. In order to examine the potential functions of nuclear PTHrP in the breast, we examined mammary gland development in PTHrP (1–84) knock-in mice, which express a mutant form of PTHrP that lacks the C-terminus and nuclear localization signals and which can be secreted but cannot enter the nucleus. Interestingly, we found that PTHrP (1–84) knock-in mice had defects in mammary mesenchyme differentiation and mammary duct outgrowth that were nearly identical to those previously described in PTHrP−/− and PTHR1−/− mice. However, the mammary buds in PTHrP (1–84) knock-in mice had severe reductions in mutant PTHrP mRNA levels, suggesting that the developmental defects were due to insufficient production of PTHrP by mammary epithelial cells and not loss of PTHrP nuclear function. Examination of the effects of nuclear PTHrP in the mammary gland in vivo will require the development of alternative animal models.
doi:10.1371/journal.pone.0090418
PMCID: PMC4006745  PMID: 24785493
3.  Bisphosphonates for treatment of osteoporosis 
Canadian Family Physician  2014;60(4):324-333.
Abstract
Objective
To outline the efficacy and risks of bisphosphonate therapy for the management of osteoporosis and describe which patients might be eligible for bisphosphonate “drug holiday.”
Quality of evidence
MEDLINE (PubMed, through December 31, 2012) was used to identify relevant publications for inclusion. Most of the evidence cited is level II evidence (non-randomized, cohort, and other comparisons trials).
Main message
The antifracture efficacy of approved first-line bisphosphonates has been proven in randomized controlled clinical trials. However, with more extensive and prolonged clinical use of bisphosphonates, associations have been reported between their administration and the occurrence of rare, but serious, adverse events. Osteonecrosis of the jaw and atypical subtrochanteric and diaphyseal femur fractures might be related to the use of bisphosphonates in osteoporosis, but they are exceedingly rare and they often occur with other comorbidities or concomitant medication use. Drug holidays should only be considered in low-risk patients and in select patients at moderate risk of fracture after 3 to 5 years of therapy.
Conclusion
When bisphosphonates are prescribed to patients at high risk of fracture, their antifracture benefits considerably outweigh their potential for harm. For patients taking bisphosphonates for 3 to 5 years, reassess the need for ongoing therapy.
PMCID: PMC4046542  PMID: 24733321
4.  Les bisphosphonates dans le traitement de l’ostéoporose 
Canadian Family Physician  2014;60(4):e197-e207.
Résumé
Objectif
Exposer l’efficacité et les risques du traitement par les bisphosphonates dans la prise en charge de l’ostéoporose et décrire les patients qui seraient de bons candidats aux congés thérapeutiques.
Qualité des données
Une recherche dans MEDLINE (PubMed, jusqu’au 31 décembre 2012) a permis de relever les publications pertinentes pour l’inclusion. La plupart des données probantes citées sont de niveau II (tirées d’essais non randomisés, de cohorte et d’autres essais comparatifs).
Message principal
L’efficacité des bisphosphonates de premier recours homologués pour la prévention des fractures a été éprouvée dans le cadre d’essais cliniques randomisés et contrôlés. Cependant, l’usage clinique répandu et prolongé des bisphosphonates a donné lieu à des rapports de manifestations indésirables rares, mais graves. L’ostéonécrose maxillaire et les fractures atypiques sous-trochantériennes ou diaphysaires du fémur seraient liées à l’emploi des bisphosphonates dans le traitement de l’ostéoporose, mais ces manifestations sont extrêmement rares et lorsqu’elles surviennent, elles sont accompagnées d’autres comorbidités ou de l’emploi concomitant de médicaments. Les congés thérapeutiques ne peuvent être envisagés que chez les patients à faible risque et dans un groupe restreint de patients dont le risque de fracture est modéré après un traitement de 3 à 5 ans.
Conclusion
Lorsque les bisphosphonates sont prescrits à des patients dont le risque de fracture est élevé, leur effet de prévention des fractures l’emporte de loin sur leurs torts potentiels. Chez les patients qui prennent des bisphosphonates depuis 3 à 5 ans, il faut réévaluer le besoin de poursuivre le traitement.
PMCID: PMC4046553
5.  Skeletal Recovery After Weaning Does Not Require PTHrP 
Journal of Bone and Mineral Research  2011;26(6):1242-1251.
Mice lose 20% to 25% of trabecular bone mineral content (BMC) during lactation and restore it after weaning through unknown mechanisms. We found that tibial Pthrp mRNA expression was upregulated fivefold by 7 days after weaning versus end of lactation in wild-type (WT) mice. To determine whether parathyroid hormone–related protein (PTHrP) stimulates bone formation after weaning, we studied a conditional knockout in which PTHrP is deleted from preosteoblasts and osteoblasts by collagen I promoter–driven Cre (CreColI). These mice are osteopenic as adults but have normal serum calcium, calcitriol, and parathyroid hormone (PTH). Pairs of Pthrpflox/flox;CreColI (null) and WT;CreColI (WT) females were mated and studied through pregnancy, lactation, and 3 weeks of postweaning recovery. By end of lactation, both genotypes lost lumbar spine BMC: WT declined by 20.6% ± 3.3%, and null decreased by 22.5% ± 3.5% (p < .0001 versus baseline; p = NS between genotypes). During postweaning recovery, both restored BMC to baseline: WT to –3.6% ± 3.7% and null to 0.3% ± 3.7% (p = NS versus baseline or between genotypes). Similar loss and full recovery of BMC were seen at the whole body and hind limb. Histomorphometry confirmed that nulls had lower bone mass at baseline and that this was equal to the value achieved after weaning. Osteocalcin, propeptide of type 1 collagen (P1NP), and deoxypyridinoline increased equally during recovery in WT and null mice; PTH decreased and calcitriol increased equally; serum calcium was unchanged. Urine calcium increased during recovery but remained no different between genotypes. Although osteoblast-derived PTHrP is required to maintain adult bone mass and Pthrp mRNA upregulates in bone after weaning, it is not required for recovery of bone mass after lactation. The factors that stimulate postweaning bone formation remain unknown. © 2011 American Society for Bone and Mineral Research.
doi:10.1002/jbmr.339
PMCID: PMC3179289  PMID: 21308774
Pregnancy; Lactation; PTH/PTHRP; Bone Mineralization; Histomorphometry; Knockout; Animal Models/rodent; Growth and Development
6.  The Calcium-Sensing Receptor Mediates Bone Turnover Induced by Dietary Calcium and Parathyroid Hormone in Neonates 
Journal of Bone and Mineral Research  2010;26(5):1057-1071.
We have investigated, in neonates, whether the calcium-sensing receptor (CaR) mediates the effects of dietary calcium on bone turnover and/or modulates parathyroid hormone (PTH)–induced bone turnover. Wild-type (WT) pups and pups with targeted deletion of the Pth (Pth–/–) gene or of both Pth and CaR (Pth–/–CaR–/–) genes were nursed by dams on a normal or high-calcium diet. Pups nursed by dams on a normal diet received daily injections of vehicle or of PTH(1–34) (80 µg/kg) for 2 weeks starting from 1 week of age. In pups receiving vehicle and fed by dams on a normal diet, trabecular bone volume, osteoblast number, type 1 collagen–positive area, and mineral apposition rate, as well as the expression of bone-formation-related genes, all were reduced significantly in Pth–/– pups compared with WT pups and were decreased even more dramatically in Pth–/–CaR–/– pups. These parameters were increased in WT and Pth–/– pups but not in Pth–/–CaR–/– pups fed by dams on a high-calcium diet compared with pups fed by dams on a normal diet. These parameters also were increased in WT, Pth–/–, and Pth–/–CaR–/– pups following exogenous PTH treatment; however, the percentage increase was less in Pth–/–CaR–/– pups than in WT and Pth–/– pups. In vehicle-treated pups fed by dams on either the normal or high-calcium diet and in PTH-treated pups fed by dams on a normal diet, the number and surfaces of osteoclasts and the ratio of RANKL/OPG were reduced significantly in Pth–/– pups and less significantly in Pth–/–CaR–/– pups compared with WT pups. These parameters were further reduced significantly in WT and Pth–/– pups from dams fed a high-calcium diet but did not decrease significantly in similarly treated Pth–/–CaR–/– pups, and they increased significantly in PTH-treated pups compared with vehicle-treated, genotype-matched pups fed by dams on the normal diet. These results indicate that in neonates, the CaR mediates alterations in bone turnover in response to changes in dietary calcium and modulates PTH-stimulated bone turnover. © 2011 American Society for Bone and Mineral Research.
doi:10.1002/jbmr.300
PMCID: PMC3179300  PMID: 21542007
CALCIUM-SENSING RECEPTOR; PARATHYROID HORMONE; DIETARY CALCIUM; BONE TURNOVER
7.  PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target 
The Journal of Clinical Investigation  2011;121(12):4655-4669.
Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention.
doi:10.1172/JCI46134
PMCID: PMC3225988  PMID: 22056386
8.  The Abnormal Phenotypes of Cartilage and Bone in Calcium-Sensing Receptor Deficient Mice Are Dependent on the Actions of Calcium, Phosphorus, and PTH 
PLoS Genetics  2011;7(9):e1002294.
Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)2D3 or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR–deficient (CaR−/−) mice to those of double homozygous CaR– and 1α(OH)ase–deficient [CaR−/−1α(OH)ase−/−] mice or those of double homozygous CaR– and PTH–deficient [CaR−/−PTH−/−] mice at 2 weeks of age. Compared to wild-type littermates, CaR−/− mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR−/− mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR−/− mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR−/− mice and that defects in endochondral bone formation in CaR−/− mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH.
Author Summary
Mice with homozygous deletion of the calcium-sensing receptor (CaR) mimic the syndrome of neonatal severe hyperparathyroidism (NSHPT) in humans with very high circulating parathyroid hormone (PTH) and severe life-threatening hypercalcemia. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)2D3 or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR–deficient mice to those of double homozygous CaR– and 1,25(OH)2D3–deficient mice or those of double homozygous CaR– and PTH–deficient mice. CaR–deficient mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, severe skeletal growth retardation, and abnormalities; and most died within 2 weeks of age. Deletion of 1,25(OH)2D3 in CaR–deficient mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, and slight improvement in skeletal growth. Deletion of PTH in CaR–deficient mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, and normalization in skeletal growth. Our results indicate that reductions in hypercalcemia reduce the early lethality of CaR–deficient mice and that deletion of PTH in patients with NSHPT may normalize skeletal growth and development.
doi:10.1371/journal.pgen.1002294
PMCID: PMC3178615  PMID: 21966280
9.  Endogenous PTH Deficiency Impairs Fracture Healing and Impedes the Fracture-Healing Efficacy of Exogenous PTH(1-34) 
PLoS ONE  2011;6(7):e23060.
Background
Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH.
Methodology/Principal Findings
Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth−/−) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1–4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth−/− mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth−/− mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth−/− mice compared to vehicle-treated wild-type and Pth−/− mice.
Conclusions/Significance
Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.
doi:10.1371/journal.pone.0023060
PMCID: PMC3146536  PMID: 21829585
10.  Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34 
Journal of Clinical Investigation  2005;115(9):2402-2411.
Mice heterozygous for targeted disruption of Pthrp exhibit, by 3 months of age, diminished bone volume and skeletal microarchitectural changes indicative of advanced osteoporosis. Impaired bone formation arising from decreased BM precursor cell recruitment and increased apoptotic death of osteoblastic cells was identified as the underlying mechanism for low bone mass. The osteoporotic phenotype was recapitulated in mice with osteoblast-specific targeted disruption of Pthrp, generated using Cre-LoxP technology, and defective bone formation was reaffirmed as the underlying etiology. Daily administration of the 1–34 amino-terminal fragment of parathyroid hormone (PTH 1–34) to Pthrp+/– mice resulted in profound improvement in all parameters of skeletal microarchitecture, surpassing the improvement observed in treated WT littermates. These findings establish a pivotal role for osteoblast-derived PTH-related protein (PTHrP) as a potent endogenous bone anabolic factor that potentiates bone formation by altering osteoblast recruitment and survival and whose level of expression in the bone microenvironment influences the therapeutic efficacy of exogenous PTH 1–34.
doi:10.1172/JCI24918
PMCID: PMC1193882  PMID: 16138191
11.  Mice Lacking the UBC4-testis Gene Have a Delay in Postnatal Testis Development but Normal Spermatogenesis and Fertility 
Molecular and Cellular Biology  2005;25(15):6346-6354.
Activation of ubiquitination occurs during spermatogenesis and is dependent on the induction of isoforms of the UBC4 family of ubiquitin-conjugating enzymes. The UBC4-testis isoform is testis specific, is induced in round spermatids, and demonstrates biochemical functions distinct from a ubiquitously expressed isoform UBC4-1. To explore further the function of UBC4-testis, mice bearing inactivation of this gene were produced. Homozygous (−/−) mice showed normal body growth and fertility. Although testis weight and morphology were normal in testes from adult mice, examination of young mice during the first wave of spermatogenesis revealed that testes were ∼10% smaller in weight at 40 and 45 days of age but had become normal at 65 days of age. Overall protein content, levels of ubiquitinated proteins, and ubiquitin-conjugating activity did not differ between wild-type and homozygous (−/−) mice. Spermatid number, as well as the motility of spermatozoa isolated from the epididymis, was also normal in homozygous (−/−) mice. To determine whether the germ cells lacking UBC4-testis might be more sensitive to stress, testes from wild-type and knockout mice were exposed to heat stress by implantation in the abdominal cavity. Testes from both strains of mice showed similar rates of degeneration in response to heat. The lack of an obvious phenotype did not appear to be due to induction of other UBC4 isoforms, as shown by two-dimensional gel immunoblotting. Our data indicate that UBC4-testis plays a role in early maturation of the testis and suggest that the many UBC4 isoforms have mixed redundant and specific functions.
doi:10.1128/MCB.25.15.6346-6354.2005
PMCID: PMC1190331  PMID: 16024774
13.  Mammary-specific deletion of parathyroid hormone–related protein preserves bone mass during lactation 
Journal of Clinical Investigation  2003;112(9):1429-1436.
Large amounts of calcium are transferred to offspring by milk. This demand results in negative calcium balance in lactating mothers and is associated with rapid bone loss. The mechanisms of bone loss during lactation are only partly understood. Several studies have suggested that parathyroid hormone–related protein (PTHrP) might be secreted into the circulation by the lactating mammary gland and regulate bone turnover during lactation. Because mammary development fails in the absence of PTHrP, conventional PTHrP knockout mice cannot be used to address this possibility. To examine this hypothesis, we therefore used mice carrying a β-lactoglobulin promoter-driven Cre transgene, one null PTHrP allele, and one floxed PTHrP allele. Expression of Cre specifically in mammary epithelial cells during late pregnancy and lactation resulted in efficient deletion of the PTHrP gene; mammary gland PTHrP mRNA and milk PTHrP protein were almost completely absent. Removal of PTHrP from the lactating mammary glands resulted in reductions in levels of circulating PTHrP and 1,25-dihydroxy vitamin D and urinary cAMP. In addition, bone turnover was reduced and bone loss during lactation was attenuated. We conclude that during lactation mammary epithelial cells are a source of circulating PTHrP that promotes bone loss by increasing rates of bone resorption.
doi:10.1172/JCI200319504
PMCID: PMC228471  PMID: 14597768
14.  The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone 
Journal of Clinical Investigation  2003;111(7):1021-1028.
The extracellular calcium-sensing receptor (CaR; alternate gene names, CaR or Casr) is a membrane-spanning G protein–coupled receptor. CaR is highly expressed in the parathyroid gland, and is activated by extracellular calcium (Ca2+o). Mice homozygous for null mutations in the CaR gene (CaR–/–) die shortly after birth because of the effects of severe hyperparathyroidism and hypercalcemia. A wide variety of functions have been attributed to CaR. However, the lethal CaR-deficient phenotype has made it difficult to dissect the direct effect of CaR deficiency from the secondary effects of hyperparathyroidism and hypercalcemia. We therefore generated parathyroid hormone–deficient (PTH-deficient) CaR–/– mice (Pth–/–CaR–/–) by intercrossing mice heterozygous for the null CaR allele with mice heterozygous for a null Pth allele. We show that genetic ablation of PTH is sufficient to rescue the lethal CaR–/– phenotype. Pth–/–CaR–/– mice survive to adulthood with no obvious difference in size or appearance relative to control Pth–/– littermates. Histologic examination of most organs did not reveal abnormalities. These Pth–/–CaR–/– mice exhibit a much wider range of values for serum calcium and renal excretion of calcium than we observe in control littermates, despite the absence of any circulating PTH. Thus, CaR is necessary for the fine regulation of serum calcium levels and renal calcium excretion independent of its effect on PTH secretion.
doi:10.1172/JCI200317416
PMCID: PMC152589  PMID: 12671051
15.  Parathyroid hormone is essential for normal fetal bone formation 
The Journal of Clinical Investigation  2002;109(9):1173-1182.
Parathyroid hormone (PTH) is a potent pharmacologic inducer of new bone formation, but no physiologic anabolic effect of PTH on adult bone has been described. We investigated the role of PTH in fetal skeletal development by comparing newborn mice lacking either PTH, PTH-related peptide (PTHrP), or both peptides. PTH-deficient mice were dysmorphic but viable, whereas mice lacking PTHrP died at birth with dyschondroplasia. PTH-deficient mice uniquely demonstrated diminished cartilage matrix mineralization, decreased neovascularization with reduced expression of angiopoietin-1, and reduced metaphyseal osteoblasts and trabecular bone. Compound mutants displayed the combined cartilaginous and osseous defects of both single mutants. These results indicate that coordinated action of both PTH and PTHrP are required to achieve normal fetal skeletal morphogenesis, and they demonstrate an essential function for PTH at the cartilage-bone interface. The effect of PTH on fetal osteoblasts may be relevant to its postnatal anabolic effects on trabecular bone.
doi:10.1172/JCI14817
PMCID: PMC150965  PMID: 11994406
16.  Parathyroid Hormone–related Peptide (PTHrP)-dependent and -independent Effects of Transforming Growth Factor β (TGF-β) on Endochondral Bone Formation  
The Journal of Cell Biology  1999;145(4):783-794.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor β (TGF-β) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-β in limiting terminal differentiation in vivo. Parathyroid hormone–related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-β and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-β inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-β1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-β in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-β acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-β has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.
PMCID: PMC2133184  PMID: 10330406
chondrocyte differentiation; skeletal development; perichondrium; organ culture; transforming growth factor β receptors

Results 1-16 (16)