PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Iron Overload during Follow-up after Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with High-Risk Neuroblastoma 
Journal of Korean Medical Science  2012;27(4):363-369.
Multiple RBC transfusions inevitably lead to a state of iron overload before and after high-dose chemotherapy and autologous stem cell transplantation (HDCT/autoSCT). Nonetheless, iron status during post-SCT follow-up remains unknown. Therefore, we investigated post-SCT ferritin levels, factors contributing to its sustained levels, and organ functions affected by iron overload in 49 children with high-risk neuroblastoma who underwent tandem HDCT/autoSCT. Although serum ferritin levels gradually decreased during post-SCT follow-up, 47.7% of the patients maintained ferritin levels above 1,000 ng/mL at 1 yr after the second HDCT/autoSCT. These patients had higher serum creatinine (0.62 vs 0.47 mg/mL, P = 0.007) than their counterparts (< 1,000 ng/mL). Post-SCT transfusion amount corresponded to increased ferritin levels at 1 yr after the second HDCT/autoSCT (P < 0.001). A lower CD34+ cell count was associated with a greater need of RBC transfusion, which in turn led to a higher serum ferritin level at 1 yr after HDCT/autoSCT. The number of CD34+ cells transplanted was an independent factor for ferritin levels at 1 yr after the second HDCT/autoSCT (P = 0.019). Consequently, CD34+ cells should be transplanted as many as possible to prevent the sustained iron overload after tandem HDCT/autoSCT and consequent adverse effects.
doi:10.3346/jkms.2012.27.4.363
PMCID: PMC3314847  PMID: 22468098
High-Dose Chemotherapy; Autologous Stem Cell Transplantation; Iron Overload; Deferasirox; Iron Chelation Treatment; Neuroblastoma
2.  Influence of Simultaneous Targeting of the Bone Morphogenetic Protein Pathway and RANK-RANKL Axis in Osteolytic Prostate Cancer Lesion in Bone 
Bone  2008;44(1):160-167.
Metastasis to bone is the leading cause of morbidity and mortality in advanced prostate cancer patients. Considering the complex reciprocal interactions between the tumor cells and the bone microenvironment, there is increasing interest in developing combination therapies targeting both the tumor growth and the bone microenvironment. In this study, we investigated the effect of simultaneous blockade of BMP pathway and RANK-RANKL axis in an osteolytic prostate cancer lesion in bone. We used a retroviral vector encoding noggin (Retronoggin) to antagonize the effect of BMPs and RANK: Fc, which is a recombinant RANKL antagonist was used to inhibit RANK-RANKL axis. The tumor growth and bone loss were evaluated using plain radiographs, hind limb tumor measurements, micro PET-CT (18F- fluorodeoxyglucose [FDG] and 18F-fluoride tracer), and histology. Tibias implanted with PC-3 cells developed pure osteolytic lesions at 2 weeks with progressive increase in cortical bone destruction at successive time points. Tibias implanted with PC-3 cells over expressing noggin (Retronoggin) resulted in reduced tumor size and decreased bone loss compared to the implanted tibias in untreated control animals. RANK: Fc administration inhibited the formation of osteoclasts, delayed the development of osteolytic lesions, decreased bone loss and reduced tumor size in tibias implanted with PC-3 cells. The combination therapy with RANK: Fc and noggin over expression effectively delayed the radiographic development of osteolytic lesions, and decreased the bone loss and tumor burden compared to implanted tibias treated with noggin over expression alone. Furthermore, the animals treated with the combination strategy exhibited decreased bone loss (micro CT) and lower tumor burden (FDG micro PET) compared to animals treated with RANK: Fc alone. Combined blockade of RANK-RANKL axis and BMP pathway resulted in reduced tumor burden and decreased bone loss compared to inhibition of either individual pathway alone in osteolytic prostate cancer lesion in bone. These results suggest that simultaneous targeting of tumor cells and osteoclasts may be the most effective method of inhibiting the progression of established osteolytic metastatic lesions in vivo.
doi:10.1016/j.bone.2008.09.009
PMCID: PMC2657045  PMID: 18929692

Results 1-2 (2)