Search tips
Search criteria

Results 1-25 (97)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Enhancement of Antitumor Immunity Using a DNA-Based Replicon Vaccine Derived from Semliki Forest Virus 
PLoS ONE  2014;9(3):e90551.
A DNA-based replicon vaccine derived from Semliki Forest virus, PSVK-shFcG-GM/B7.1 (Fig. 1a) was designed for tumor immunotherapy as previously constructed. The expression of the fusion tumor antigen (survivin and hCGβ-CTP37) and adjuvant molecular protein (Granulocyte-Macrophage Colony-Stimulating Factor/ GM-CSF/B7.1) genes was confirmed by Immunofluorescence assay in vitro, and immunohistochemistry assay in vivo. In this paper, the immunological effect of this vaccine was determined using immunological assays as well as animal models. The results showed that this DNA vaccine induced both humoral and cellular immune responses in C57BL/6 mice after immunization, as evaluated by the ratio of CD4+/CD8+ cells and the release of IFN-γ. Furthermore, the vaccination of C57BL/6 mice with PSVK-shFcG-GM/B7.1 significantly delayed the in vivo growth of tumors in animal models (survivin+ and hCGβ+ murine melanoma, B16) when compared to vaccination with the empty vector or the other control constructs (Fig. 1b). These data indicate that this type of replicative DNA vaccine could be developed as a promising approach for tumor immunotherapy. Meanwhile, these results provide a basis for further study in vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
PMCID: PMC3946523  PMID: 24608380
2.  Modulation of Basophils' Degranulation and Allergy-Related Enzymes by Monomeric and Dimeric Naphthoquinones 
PLoS ONE  2014;9(2):e90122.
Allergic disorders are characterized by an abnormal immune response towards non-infectious substances, being associated with life quality reduction and potential life-threatening reactions. The increasing prevalence of allergic disorders demands for new and effective anti-allergic treatments. Here we test the anti-allergic potential of monomeric (juglone, menadione, naphthazarin, plumbagin) and dimeric (diospyrin and diosquinone) naphthoquinones. Inhibition of RBL-2H3 rat basophils' degranulation by naphthoquinones was assessed using two complementary stimuli: IgE/antigen and calcium ionophore A23187. Additionally, we tested for the inhibition of leukotrienes production in IgE/antigen-stimulated cells, and studied hyaluronidase and lipoxidase inhibition by naphthoquinones in cell-free assays. Naphthazarin (0.1 µM) decreased degranulation induced by IgE/antigen but not A23187, suggesting a mechanism upstream of the calcium increase, unlike diospyrin (10 µM) that reduced degranulation in A23187-stimulated cells. Naphthoquinones were weak hyaluronidase inhibitors, but all inhibited soybean lipoxidase with the most lipophilic diospyrin, diosquinone and menadione being the most potent, thus suggesting a mechanism of competition with natural lipophilic substrates. Menadione was the only naphthoquinone reducing leukotriene C4 production, with a maximal effect at 5 µM. This work expands the current knowledge on the biological properties of naphthoquinones, highlighting naphthazarin, diospyrin and menadione as potential lead compounds for structural modification in the process of improving and developing novel anti-allergic drugs.
PMCID: PMC3938571  PMID: 24587235
3.  Cross-Presentation of Synthetic Long Peptides by Human Dendritic Cells: A Process Dependent on ERAD Component p97/VCP but Not sec61 and/or Derlin-1 
PLoS ONE  2014;9(2):e89897.
Antitumor vaccination using synthetic long peptides (SLP) is an additional therapeutic strategy currently under development. It aims to activate tumor-specific CD8+ CTL by professional APCs such as DCs. DCs can activate T lymphocytes by MHC class I presentation of exogenous antigens - a process referred to as “cross-presentation”. Until recently, the intracellular mechanisms involved in cross-presentation of soluble antigens have been unclear. Here, we characterize the cross-presentation pathway of SLP Melan-A16–40 containing the HLA-A2-restricted epitope26–35 (A27L) in human DCs. Using confocal microscopy and specific inhibitors, we show that SLP16–40 is rapidly taken up by DC and follows a classical TAP- and proteasome-dependent cross-presentation pathway. Our data support a role for the ER-associated degradation machinery (ERAD)-related protein p97/VCP in the transport of SLP16–40 from early endosomes to the cytoplasm but formally exclude both sec61 and Derlin-1 as possible retro-translocation channels for cross-presentation. In addition, we show that generation of the Melan-A26–35 peptide from the SLP16–40 was absolutely not influenced by the proteasome subunit composition in DC. Altogether, our findings propose a model for cross-presentation of SLP which tends to enlarge the repertoire of potential candidates for retro-translocation of exogenous antigens to the cytosol.
PMCID: PMC3937416  PMID: 24587108
4.  Transgenic Rabbits That Overexpress the Neonatal Fc Receptor (FcRn) Generate Higher Quantities and Improved Qualities of Anti-Thymocyte Globulin (ATG) 
PLoS ONE  2013;8(10):e76839.
Immune suppression with rabbit anti-thymocyte globulin (rATG) is a well-established therapeutic concept for preventing host rejection of transplanted organs and graft versus host disease. Increasing the efficiency of rATG production by reducing the number of animals would be highly beneficial to lower cost and to improve quality standards. We have developed transgenic (Tg) mice and rabbits that overexpress the neonatal Fc receptor (FcRn) and have shown an augmented humoral immune response in these animals. To test whether our FcRn Tg rabbits produced rATG more efficiently, we immunized them and their New Zealand White controls with live Jurkat cells. By day 21 after immunization, Tg animals produced significantly, 1.5 times higher amount of total IgG compared to their wt littermates. Also, the binding efficiency of Tg sera to Jurkat cells and their complement-mediated cytotoxicity was significantly higher. The purified Tg IgG preparation contained 2.6 the amount of Jurkat specific IgG as the wt preparation analyzed by complement-mediated lysis, suggesting greater antigen-specific B cell activation in the Tg rabbits. To test this hypothesis, immunization with ovalbumin and human α1-antitrypsin was performed, resulting in significantly greater numbers of antigen-specific B-cells in the FcRn Tg rabbits as compared with wt controls. The shift towards significantly larger populations of antigen-specific B cells relative to the non-specific B cell pool is further corroborated by our previous findings in FcRn Tg mice. Consequently, our FcRn Tg rabbits have the potential to offer substantial qualitative and quantitative improvements for the production of rATG and other polyclonal or monoclonal antibodies.
PMCID: PMC3806768  PMID: 24194847
5.  Characterization of T Cell Receptors of Th1 Cells Infiltrating Inflamed Skin of a Novel Murine Model of Palladium-Induced Metal Allergy 
PLoS ONE  2013;8(10):e76385.
Metal allergy is categorized as a delayed-type hypersensitivity reaction, and is characterized by the recruitment of lymphocytes into sites of allergic inflammation. Because of the unavailability of suitable animal models for metal allergy, the role of T cells in the pathogenesis of metal allergy has not been explored. Thus, we developed a novel mouse model for metal allergy associated with infiltration of T cells by multiple injections of palladium (Pd) plus lipopolysaccharide into the footpad. Using this model, we characterized footpad-infiltrating T cells in terms of phenotypic markers, T cell receptor (TCR) repertoires and cytokine expression. CD3+ CD4+ T cells accumulated in the allergic footpads 7 days after Pd challenge. The expression levels of CD25, interleukin-2, interferon-γ and tumor necrosis factor, but not interleukin-4 and interleukin-5, increased in the footpads after challenge, suggesting CD4+ T helper 1 (Th1) cells locally expanded in response to Pd. Infiltrated T cells in the footpads frequently expressed AV18-1 and BV8-2 T cell receptor (TCR) chains compared with T cells in the lymph nodes and exhibited oligoclonality. T-cell clones identified from Pd-allergic mouse footpads shared identical CDR3 sequences containing AV18-1 and BV8-2. These results suggest that TCR AV18-1 and BV8-2 play dominant and critical parts in the antigen specificity of Pd-specific Th1 cells.
PMCID: PMC3789730  PMID: 24098486
6.  Combining Next-Generation Sequencing and Immune Assays: A Novel Method for Identification of Antigen-Specific T Cells 
PLoS ONE  2013;8(9):e74231.
In this study, we combined a novel sequencing method, which can identify individual clonotypes based on their unique T cell receptor (TCR) rearrangement, with existing immune assays to characterize antigen-specific T cell responses. We validated this approach using three types of assays routinely used to measure antigen-specific responses: pentamers which enable identification of T cells bearing specific TCRs, activation marker expression following antigen stimulation and antigen-induced proliferation to identify cytomegalovirus (CMV) specific clonotypes. In one individual, 8 clonotypes were identified using a pentamer reagent derived from the CMV pp65 protein. The same 8 clonotypes were also identified following sequencing of cells that upregulated an activation marker following incubation with an identical peptide derived from pp65. These 8 and an additional 8 clonotypes were identified using a more sensitive CFSE-based proliferation assay. We found clear sequence homology among some of the clonotypes identified, and the CDR3 region in one clonotype was identical to a previously published pp65-specific clonotype sequence. Many of these CMV-specific clonotypes were present at frequencies below 10−5 which are undetectable using standard flow-cytometric methods. These studies suggest that an immune response is comprised of a diverse set of clones, many of which are present at very low frequencies. Thus, the combination of immune assays and sequencing depicts the richness and diversity of an immune response at a level that is not possible using standard immune assays alone. The methods articulated in this work provide an enhanced understanding of T cell-mediated immune responses at the clonal level.
PMCID: PMC3778005  PMID: 24069285
7.  Role of S-Palmitoylation on IFITM5 for the Interaction with FKBP11 in Osteoblast Cells 
PLoS ONE  2013;8(9):e75831.
Recently, one of the interferon-induced transmembrane (IFITM) family proteins, IFITM3, has become an important target for the activity against influenza A (H1N1) virus infection. In this protein, a post-translational modification by fatty acids covalently attached to cysteine, termed S-palmitoylation, plays a crucial role for the antiviral activity. IFITM3 possesses three cysteine residues for the S-palmitoylation in the first transmembrane (TM1) domain and in the cytoplasmic (CP) loop. Because these cysteines are well conserved in the mammalian IFITM family proteins, the S-palmitoylation on these cysteines is significant for their functions. IFITM5 is another IFITM family protein and interacts with the FK506-binding protein 11 (FKBP11) to form a higher-order complex in osteoblast cells, which induces the expression of immunologically relevant genes. In this study, we investigated the role played by S-palmitoylation of IFITM5 in its interaction with FKBP11 in the cells, because this interaction is a key process for the gene expression. Our investigations using an established reporter, 17-octadecynoic acid (17-ODYA), and an inhibitor for the S-palmitoylation, 2-bromopalmitic acid (2BP), revealed that IFITM5 was S-palmitoylated in addition to IFITM3. Specifically, we found that cysteine residues in the TM1 domain and in the CP loop were S-palmitoylated in IFITM5. Then, we revealed by immunoprecipitation and western blot analyses that the interaction of IFITM5 with FKBP11 was inhibited in the presence of 2BP. The mutant lacking the S-palmitoylation site in the TM1 domain lost the interaction with FKBP11. These results indicate that the S-palmitoylation on IFITM5 promotes the interaction with FKBP11. Finally, we investigated bone nodule formation in osteoblast cells in the presence of 2BP, because IFITM5 was originally identified as a bone formation factor. The experiment resulted in a morphological aberration of the bone nodule. This also indicated that the S-palmitoylation contributes to bone formation.
PMCID: PMC3776769  PMID: 24058703
8.  The Coxsackievirus and Adenovirus Receptor (CAR) Undergoes Ectodomain Shedding and Regulated Intramembrane Proteolysis (RIP) 
PLoS ONE  2013;8(8):e73296.
The Coxsackievirus and Adenovirus Receptor (CAR) is a cell adhesion molecule originally characterized as a virus receptor but subsequently shown to be involved in physiological processes such as neuronal and heart development, epithelial tight junction integrity, and tumour suppression. Proteolysis of cell adhesion molecules and a wide variety of other cell surface proteins serves as a mechanism for protein turnover and, in some cases, cell signaling. Metalloproteases such as A Disintegrin and Metalloprotease (ADAM) family members cleave cell surface receptors to release their substrates’ ectodomains, while the presenilin/ɣ-secretase complex mediates regulated intramembrane proteolysis (RIP), releasing intracellular domain fragments from the plasma membrane. In the case of some substrates such as Notch and amyloid precursor protein (APP), the released intracellular domains enter the nucleus to modulate gene expression. We report that CAR ectodomain is constitutively shed from glioma cells and developing neurons, and is also shed when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. We identified ADAM10 as a sheddase of CAR using assays involving shRNA knockdown and rescue, overexpression of wild-type ADAM10 and inhibition of ADAM10 activity by addition of its prodomain. In vitro peptide cleavage, mass spectrometry and mutagenesis revealed the amino acids M224 to L227 of CAR as the site of ADAM10-mediated ectodomain cleavage. CAR also undergoes RIP by the presenilin/γ-secretase complex, and the intracellular domain of CAR enters the nucleus. Ectodomain shedding is a prerequisite for RIP of CAR. Thus, CAR belongs to the increasing list of cell surface molecules that undergo ectodomain shedding and that are substrates for ɣ-secretase-mediated RIP.
PMCID: PMC3756012  PMID: 24015300
9.  The Loss of Gnai2 and Gnai3 in B Cells Eliminates B Lymphocyte Compartments and Leads to a Hyper-IgM Like Syndrome 
PLoS ONE  2013;8(8):e72596.
B lymphocytes are compartmentalized within lymphoid organs. The organization of these compartments depends upon signaling initiated by G-protein linked chemoattractant receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in chemoattractant signaling we created mice lacking both proteins in their B lymphocytes. While bone marrow B cell development and egress is grossly intact; mucosal sites, splenic marginal zones, and lymph nodes essentially lack B cells. There is a partial block in splenic follicular B cell development and a 50-60% reduction in splenic B cells, yet normal numbers of splenic T cells. The absence of Gαi2 and Gαi3 in B cells profoundly disturbs the architecture of lymphoid organs with loss of B cell compartments in the spleen, thymus, lymph nodes, and gastrointestinal tract. This results in a severe disruption of B cell function and a hyper-IgM like syndrome. Beyond the pro-B cell stage, B cells are refractory to chemokine stimulation, and splenic B cells are poorly responsive to antigen receptor engagement. Gαi2 and Gαi3 are therefore critical for B cell chemoattractant receptor signaling and for normal B cell function. These mice provide a worst case scenario of the consequences of losing chemoattractant receptor signaling in B cells.
PMCID: PMC3747273  PMID: 23977324
10.  Affinity-Purified Respiratory Syncytial Virus Antibodies from Intravenous Immunoglobulin Exert Potent Antibody-Dependent Cellular Cytotoxicity 
PLoS ONE  2013;8(7):e69390.
Mixed infections are one of the major therapeutic challenges, as the current strategies have had limited success. One of the most common and widespread conditions of mixed infection is respiratory syncytial virus-mediated pathology of the respiratory tract in children. There is a dire need for the development of novel therapeutic approaches during mixed infections. Therapeutic intravenous immunoglobulin preparations, obtained from plasma pools of healthy donors have been used in immune deficiencies. This study was thus designed to characterize the functional efficacy of RSV-specific antibodies in IVIg. To explore the functional ability of these affinity-purified RSV-specific antibodies, the antibody-dependent and complement dependent cytotoxicity was determined using peripheral cells of healthy donors. This study demonstrates the existence of highly potent RSV-specific antibodies in IVIg preparations and provides the basis for the use of IVIg as broad-spectrum protective shield to RSV-infected children during mixed infections.
PMCID: PMC3716625  PMID: 23894466
11.  Granulin Exacerbates Lupus Nephritis via Enhancing Macrophage M2b Polarization 
PLoS ONE  2013;8(6):e65542.
Background and Aims
Lupus nephritis (LN), with considerable morbidity and mortality, is one of the most severe manifestations of systemic lupus erythematosus (SLE). Yet, the pathogenic mechanisms of LN have not been clearly elucidated, and efficient therapies are still in great need. Granulin (GRN), a multifunctional protein linked to inflammatory diseases, has recently been reported to correlate with the disease activity of autoimmune diseases. However, the role of GRN in the pathogenic process of LN still remains obscure. In this study, we explored its potential role and underlying mechanism in the pathogenesis of LN.
Methodology/Principal Findings
We found that serum GRN levels were significantly up-regulated and were positively correlated with the severity of LN. Overexpression of GRN in vivo by transgenic injection remarkably exacerbated LN, whereas down-regulation of GRN with shRNA ameliorated LN, firmly demonstrating the critical role of GRN in the pathogenesis of LN. Notably, macrophage phenotype analysis revealed that overexpression of GRN could enhance macrophage polarization to M2b, a key mediator of the initiation and progression of LN. On the contrary, down-regulation of GRN resulted in impaired M2b differentiation, thus ameliorating LN. Moreover, we found that MAPK signals were necessary for the effect of GRN on macrophage M2b polarization.
We first demonstrated that GRN could aggravate lupus nephritis (LN) via promoting macrophage M2b polarization, which might provide insights into the pathogenesis of LN as well as potential therapeutic strategies against LN.
PMCID: PMC3673914  PMID: 23755248
12.  P2X7 Integrates PI3K/AKT and AMPK-PRAS40-mTOR Signaling Pathways to Mediate Tumor Cell Death 
PLoS ONE  2013;8(4):e60184.
Extracellular adenosine triphosphate (ATP) functions as a novel danger signal that boosts antitumor immunity and can also directly kill tumor cells. We have previously reported that chronic exposure of tumor cells to ATP provokes P2X7-mediated tumor cell death, by as yet incompletely defined molecular mechanisms.
Methodology/Principal Findings
Here, we show that acute exposure of tumor cells to ATP results in rapid cytotoxic effects impacting several aspects of cell growth/survival, leading to inhibition of tumor growth in vitro and in vivo. Using agonist and antagonist studies together with generation of P2X7 deficient tumor cell lines by lentiviral shRNA delivery system, we confirm P2X7 to be the central control node transmitting extracellular ATP signals. We identify that downstream intracellular signaling regulatory networks implicate two signaling pathways: the known P2X7-PI3K/AKT axis and remarkably a novel P2X7-AMPK-PRAS40-mTOR axis. When exposed to high levels of extracellular ATP, these two signaling axes perturb the balance between growth and autophagy, thereby promoting tumor cell death.
Our study defines novel molecular mechanisms underpinning the antitumor actions of P2X7 and provides a further rationale for purine-based drugs in targeted cancer therapy.
PMCID: PMC3615040  PMID: 23565201
13.  Autoantibodies against Muscarinic Type 3 Receptor in Sjögren's Syndrome Inhibit Aquaporin 5 Trafficking 
PLoS ONE  2013;8(1):e53113.
Sjögren's syndrome (SjS) is a chronic autoimmune disease that mainly targets the salivary and lacrimal glands. It has been controversial whether anti-muscarinic type 3 receptor (α-M3R) autoantibodies in patients with SjS inhibit intracellular trafficking of aquaporin-5 (AQP5), water transport protein, leading to secretory dysfunction. To address this issue, GFP-tagged human AQP5 was overexpressed in human salivary gland cells (HSG-hAQP5) and monitored AQP5 trafficking to the plasma membrane following carbachol (CCh, M3R agonist) stimulation. AQP5 trafficking was indeed mediated by M3R stimulation, shown in partial blockage of trafficking by M3R-antagonist 4-DAMP. HSG-hAQP5 pre-incubated with SjS plasma for 24 hours significantly reduced AQP5 trafficking with CCh, compared with HSG-hAQP5 pre-incubated with healthy control (HC) plasma. This inhibition was confirmed by monoclonal α-M3R antibody and pre-absorbed plasma. Interestingly, HSG-hAQP5 pre-incubated with SjS plasma showed no change in cell volume, compared to the cells incubated with HC plasma showing shrinkage by twenty percent after CCh-stimulation. Our findings clearly indicate that binding of anti-M3R autoantibodies to the receptor, which was verified by immunoprecipitation, suppresses AQP5 trafficking to the membrane and contribute to impaired fluid secretion in SjS. Our current study urges further investigations of clinical associations between SjS symptoms, such as degree of secretory dysfunction, cognitive impairment, and/or bladder irritation, and different profiles (titers, isotypes, and/or specificity) of anti-M3R autoantibodies in individuals with SjS.
PMCID: PMC3559734  PMID: 23382834
14.  The Autoimmunity Risk Variant LYP-W620 Cooperates with CSK in the Regulation of TCR Signaling 
PLoS ONE  2013;8(1):e54569.
The protein tyrosine phosphatase LYP, a key regulator of TCR signaling, presents a single nucleotide polymorphism, C1858T, associated with several autoimmune diseases such as type I diabetes, rheumatoid arthritis, and lupus. This polymorphism changes an R by a W in the P1 Pro rich motif of LYP, which binds to CSK SH3 domain, another negative regulator of TCR signaling. Based on the analysis of the mouse homologue, Pep, it was proposed that LYP and CSK bind constitutively to inhibit LCK and subsequently TCR signaling. The detailed study of LYP/CSK interaction, here presented, showed that LYP/CSK interaction was inducible upon TCR stimulation, and involved LYP P1 and P2 motifs, and CSK SH3 and SH2 domains. Abrogating LYP/CSK interaction did not preclude the regulation of TCR signaling by these proteins.
PMCID: PMC3554717  PMID: 23359562
15.  Systemic Overexpression of TNFα-converting Enzyme Does Not Lead to Enhanced Shedding Activity In Vivo 
PLoS ONE  2013;8(1):e54412.
TNFα-converting enzyme (TACE/ADAM17) is a membrane-bound proteolytic enzyme with a diverse set of target molecules. Most importantly, TACE is indispensable for the release and activation of pro-TNFα and the ligands for epidermal growth factor receptor in vivo. Previous studies suggested that the overproduction of TACE is causally related to the pathogenesis of inflammatory diseases and cancers. To test this hypothesis, we generated a transgenic line in which the transcription of exogenous Tace is driven by a CAG promoter. The Tace-transgenic mice were viable and exhibited no overt defects, and the quantitative RT-PCR and Western blot analyses confirmed that the transgenically introduced Tace gene was highly expressed in all of the tissues examined. The Tace-transgenic mice were further crossed with Tace−/+ mice to abrogate the endogenous TACE expression, and the Tace-transgenic mice lacking endogenous Tace gene were also viable without any apparent defects. Furthermore, there was no difference in the serum TNFα levels after lipopolysaccharide injection between the transgenic mice and control littermates. These observations indicate that TACE activity is not necessarily dependent on transcriptional regulation and that excess TACE does not necessarily result in aberrant proteolytic activity in vivo.
PMCID: PMC3544834  PMID: 23342154
16.  Loss of P2X7 Receptor Plasma Membrane Expression and Function in Pathogenic B220+ Double-Negative T Lymphocytes of Autoimmune MRL/lpr Mice 
PLoS ONE  2012;7(12):e52161.
Lupus is a chronic inflammatory autoimmune disease influenced by multiple genetic loci including Fas Ligand (FasL) and P2X7 receptor (P2X7R). The Fas/Fas Ligand apoptotic pathway is critical for immune homeostasis and peripheral tolerance. Normal effector T lymphocytes up-regulate the transmembrane tyrosine phosphatase B220 before undergoing apoptosis. Fas-deficient MRL/lpr mice (lpr mutation) exhibit lupus and lymphoproliferative syndromes due to the massive accumulation of B220+ CD4–CD8– (DN) T lymphocytes. The precise ontogeny of B220+ DN T cells is unknown. B220+ DN T lymphocytes could be derived from effector CD4+ and CD8+ T lymphocytes, which have not undergone activation-induced cell death due to inactivation of Fas, or from a special cell lineage. P2X7R is an extracellular ATP-gated cell membrane receptor involved in the release of proinflammatory cytokines and TNFR1/Fas-independent cell death. P2X7R also regulate early signaling events involved in T-cell activation. We show herein that MRL/lpr mice carry a P2X7R allele, which confers a high sensitivity to ATP. However, during aging, the MRL/lpr T-cell population exhibits a drastically reduced sensitivity to ATP- or NAD-mediated stimulation of P2X7R, which parallels the increase in B220+ DN T-cell numbers in lymphoid organs. Importantly, we found that this B220+ DN T-cell subpopulation has a defect in P2X7R-mediated responses. The few B220+ T cells observed in normal MRL+/+ and C57BL/6 mice are also resistant to ATP or NAD treatment. Unexpectedly, while P2X7R mRNA and proteins are present inside of B220+ T cells, P2X7R are undetectable on the plasma membrane of these T cells. Our results prompt the conclusion that cell surface expression of B220 strongly correlates with the negative regulation of the P2X7R pathway in T cells.
PMCID: PMC3528777  PMID: 23284917
17.  P2 receptors and immunity 
Immune cells express receptors for extracellular nucleotides named P2 receptors. P2 receptors transduce signals delivered by nucleotides present in the extracellular environment. Accruing evidence shows that purinergic signalling has a profound effect on multiple immune cell responses such as T lymphocyte proliferation, chemotaxis, cytokine release, phagocytosis, Ag presentation and cytotoxicity. This makes P2 receptors an attractive target for the therapy of immuno-mediated disease and cancer.
PMCID: PMC3514633  PMID: 22909902
Nucleotides; Adenosine triphosphate; Damage associated molecular patterns (DAMP); Purinergic receptors; Inflammasome; Autoimmune diseases
18.  Ivermectin Inhibits Growth of Chlamydia trachomatis in Epithelial Cells 
PLoS ONE  2012;7(10):e48456.
Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia.
PMCID: PMC3484050  PMID: 23119027
19.  Diversity, Molecular Characterization and Expression of T Cell Receptor γ in a Teleost Fish, the Sea Bass (Dicentrarchus labrax, L) 
PLoS ONE  2012;7(10):e47957.
Two lineages of T cells, expressing either the αβ T cell receptor (TR) or the γδ TR, exist in Gnathostomes. The latter type of T cells account for 1–10 % of T cells in blood and up to 30 % in the small intestine. They may recognize unconventional antigens (phosphorylated microbial metabolites, lipid antigens) without the need of major histocompatibility class I (MH1) or class II (MH2) presentation. In this work we have described cloning and structural characterization of TR -chain (TRG) from the teleost Dicentrarchus labrax. Further, by means of quantitative PCR analysis, we analyzed TRG expression levels both in poly I:C stimulated leukocytes in vitro, and following infection with betanodavirus in vivo. Two full length cDNAs relative to TRG, with the highest peptide and nucleotide identity with Japanese flounder, were identified. A multiple alignment analysis showed the conservation of peptides fundamental for TRG biological functions, and of the FGXG motif in the FR4 region, typical of most TR and immunoglobulin light chains. A 3D structure consisting of two domains mainly folded as beta strands with a sandwich architecture for each domain was also reported. TRG CDR3 of 8–18 AA in length and diversity in the TRG rearrangements expressed in thymus and intestine for a given V/C combination were evidenced by junction length spectratyping. TRG mRNA expression levels were high in basal conditions both in thymus and intestine, while in kidney and gut leukocytes they were up-regulated after in vitro stimulation by poly I:C. Finally, in juveniles the TRG expression levels were up-regulated in the head kidney and down-regulated in intestine after in vivo infection with betanodavirus. Overall, in this study the involvement of TRG-bearing T cells during viral stimulation was described for the first time, leading to new insights for the identification of T cell subsets in fish.
PMCID: PMC3485050  PMID: 23133531
20.  Donor Bone Marrow-Derived T Cells Inhibit GVHD Induced by Donor Lymphocyte Infusion in Established Mixed Allogeneic Hematopoietic Chimeras 
PLoS ONE  2012;7(10):e47120.
Delayed administration of donor lymphocyte infusion (DLI) to established mixed chimeras has been shown to achieve anti-tumor responses without graft-vs.-host disease (GVHD). Herein we show that de novo donor BM-derived T cells that are tolerant of the recipients are important in preventing GVHD in mixed chimeras receiving delayed DLI. Mixed chimeras lacking donor BM-derived T cells developed significantly more severe GVHD than those with donor BM-derived T cells after DLI, even though both groups had comparable levels of total T cells at the time of DLI. Post-DLI depletion of donor BM-derived T cells in mixed chimeras, as late as 20 days after DLI, also provoked severe GVHD. Although both CD4 and CD8 T cells contributed to the protection, the latter were significantly more effective, suggesting that inhibition of GVHD was not mainly mediated by CD4 regulatory T cells. The lack of donor BM-derived T cells was associated with markedly increased accumulation of DLI-derived alloreactive T cells in parenchymal GVHD target tissues. Thus, donor BM-derived T cells are an important factor in determining the risk of GVHD and therefore, offer a potential therapeutic target for preventing and ameliorating GVHD in the setting of delayed DLI in established mixed chimeras.
PMCID: PMC3471915  PMID: 23077554
21.  IP-FCM Measures Physiologic Protein-Protein Interactions Modulated by Signal Transduction and Small-Molecule Drug Inhibition 
PLoS ONE  2012;7(9):e45722.
Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition.
PMCID: PMC3448684  PMID: 23029201
22.  Reprogrammed quiescent B cells provide an effective cellular therapy against chronic experimental autoimmune encephalomyelitis 
European journal of immunology  2011;41(6):1696-1708.
Activated B cells can regulate immunity, and have been envisaged as potential cell-based therapy for treating autoimmune diseases. However, activated human B cells can also propagate immune responses, and the effects resulting from their infusion into patients cannot be predicted. This led us to consider resting B cells, which in contrast are poorly immunogenic, as an alternative cellular platform for the suppression of unwanted immunity. Here, we report that resting B cells can be directly engineered to express antigens in a remarkably simple, rapid, and effective way with lentiviral vectors. Notably, this neither required nor induced activation of the B cells. With that approach we were able to produce reprogrammed resting B cells that inhibited antigen-specific CD4+ T cells, CD8+ T cells, and B cells upon adoptive transfer in mice. Furthermore, resting B cells engineered to ectopically express myelin oligodendrocyte glycoprotein antigen protected recipient mice from severe disability and demyelination in experimental autoimmune encephalomyelitis, and even induced complete remission from disease in mice lacking functional natural regulatory T cells, which otherwise developed a chronic paralysis. In conclusion, our study introduces reprogrammed quiescent B cells as a novel tool for suppressing undesirable immunity.
PMCID: PMC3431508  PMID: 21469107
B cells; autoimmunity; gene therapy; lentiviral vector; cellular therapy
23.  Betaglycan (TβRIII) Is Expressed in the Thymus and Regulates T Cell Development by Protecting Thymocytes from Apoptosis 
PLoS ONE  2012;7(8):e44217.
TGF-β type III receptor (TβRIII) is a coreceptor for TGFβ family members required for high-affinity binding of these ligands to their receptors, potentiating their cellular functions. TGF-β [1]–[3], bone morphogenetic proteins (BMP2/4) and inhibins regulate different checkpoints during T cell differentiation. Although TβRIII is expressed on hematopoietic cells, the role of this receptor in the immune system remains elusive. Here, we provide the first evidence that TβRIII is developmentally expressed during T cell ontogeny, and plays a crucial role in thymocyte differentiation. Blocking of endogenous TβRIII in fetal thymic organ cultures led to a delay in DN-DP transition. In addition, in vitro development of TβRIII−/− thymic lobes also showed a significant reduction in absolute thymocyte numbers, which correlated with increased thymocyte apoptosis, resembling the phenotype reported in Inhibin α −/− thymic lobes. These data suggest that Inhibins and TβRIII may function as a molecular pair regulating T cell development.
PMCID: PMC3430661  PMID: 22952931
24.  The Adaptor Protein SAP Directly Associates with CD3ζ Chain and Regulates T Cell Receptor Signaling 
PLoS ONE  2012;7(8):e43200.
Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex.
PMCID: PMC3418226  PMID: 22912825
25.  Evidence that the Density of Self Peptide-MHC Ligands Regulates T-Cell Receptor Signaling 
PLoS ONE  2012;7(8):e41466.
Noncognate or self peptide-MHC (pMHC) ligands productively interact with T-cell receptor (TCR) and are always in a large access over the cognate pMHC on the surface of antigen presenting cells. We assembled soluble cognate and noncognate pMHC class I (pMHC-I) ligands at designated ratios on various scaffolds into oligomers that mimic pMHC clustering and examined how multivalency and density of the pMHCs in model clusters influences the binding to live CD8 T cells and the kinetics of TCR signaling. Our data demonstrate that the density of self pMHC-I proteins promotes their interaction with CD8 co-receptor, which plays a critical role in recognition of a small number of cognate pMHC-I ligands. This suggests that MHC clustering on live target cells could be utilized as a sensitive mechanism to regulate T cell responsiveness.
PMCID: PMC3411518  PMID: 22870225

Results 1-25 (97)