PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (57)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Genetic determinants of disease progression in Alzheimer’s disease 
There is a strong genetic basis for late-onset of Alzheimer’s disease (LOAD); thus far 22 genes/loci have been identified that affect the risk of LOAD. However, the relationships among the genetic variations at these loci and clinical progression of the disease have not been fully explored. In the present study, we examined the relationships of 22 known LOAD genes to the progression of AD in 680 AD patients recruited from the University of Pittsburgh Alzheimer’s Disease Research Center. Patients were classified as “rapid progressors” if the MMSE changed ≥3 points in 12 months and “slow progressors” if the MMSE changed ≤2 points. We also performed a genome-wide association study in this cohort in an effort to identify new loci for AD progression. Association analysis between SNPs and the progression status of the AD cases was performed using logistic regression model controlled for age, gender, dementia medication use, psychosis, and hypertension. While no significant association was observed with either APOE*4 (p=0.94) or APOE*2 (p=0.33) with AD progression, we found multiple nominally significant associations (p<0.05) either within or adjacent to seven known LOAD genes (INPP5D, MEF2C, TREM2, EPHA1, PTK2B, FERMT2 and CASS4) that harbor both risk and protective SNPs. Genome-wide association analyses identified four suggestive loci (PAX3, CCRN4L, PIGQ and ADAM19) at p<1E-05. Our data suggest that short-term clinical disease progression in AD has genetic basis. Better understanding of these genetic factors could help to improve clinical trial design and potentially affect the development of disease modifying therapies.
doi:10.3233/JAD-140729
PMCID: PMC4245313  PMID: 25114068
LOAD; GWAS; MMSE; AD progression
2.  Genome-Wide Association Study of Antiphospholipid Antibodies 
Autoimmune Diseases  2013;2013:761046.
Background. The persistent presence of antiphospholipid antibodies (APA) may lead to the development of primary or secondary antiphospholipid syndrome. Although the genetic basis of APA has been suggested, the identity of the underlying genes is largely unknown. In this study, we have performed a genome-wide association study (GWAS) in an effort to identify susceptibility loci/genes for three main APA: anticardiolipin antibodies (ACL), lupus anticoagulant (LAC), and anti-β2 glycoprotein I antibodies (anti-β2GPI). Methods. DNA samples were genotyped using the Affymetrix 6.0 array containing 906,600 single-nucleotide polymorphisms (SNPs). Association of SNPs with the antibody status (positive/negative) was tested using logistic regression under the additive model. Results. We have identified a number of suggestive novel loci with P < E − 05. Although they do not meet the conservative threshold of genome-wide significance, many of the suggestive loci are potential candidates for the production of APA. We have replicated the previously reported associations of HLA genes and APOH with APA but these were not the top loci. Conclusions. We have identified a number of suggestive novel loci for APA that will stimulate follow-up studies in independent and larger samples to replicate our findings.
doi:10.1155/2013/761046
PMCID: PMC3595708  PMID: 23509613
4.  Genome-wide association analysis of age-at-onset in Alzheimer’s disease 
Molecular psychiatry  2011;17(12):1340-1346.
The risk of Alzheimer’s disease (AD) is strongly determined by genetic factors and recent genome-wide association studies (GWAS) have identified several genes for the disease risk. In addition to the disease risk, age-at-onset (AAO) of AD has also strong genetic component with an estimated heritability of 42%. Identification of AAO genes may help to understand the biological mechanisms that regulate the onset of the disease. Here we report the first GWAS focused on identifying genes for the AAO of AD. We performed a genome-wide meta analysis on 3 samples comprising a total of 2,222 AD cases. A total of ~2.5 million directly genotyped or imputed SNPs were analyzed in relation to AAO of AD. As expected, the most significant associations were observed in the APOE region on chromosome 19 where several SNPs surpassed the conservative genome-wide significant threshold (P<5E-08). The most significant SNP outside the APOE region was located in the DCHS2 gene on chromosome 4q31.3 (rs1466662; P=4.95E-07). There were 19 additional significant SNPs in this region at P<1E-04 and the DCHS2 gene is expressed in the cerebral cortex and thus is a potential candidate for affecting AAO in AD. These findings need to be confirmed in additional well-powered samples.
doi:10.1038/mp.2011.135
PMCID: PMC3262952  PMID: 22005931
Genome-wide association study; age-at-onset; Alzheimer’s disease; single-nucleotide polymorphisms; meta analysis
5.  Age-at-Onset in Late Onset Alzheimer Disease is Modified by Multiple Genetic Loci 
JAMA neurology  2014;71(11):1394-1404.
Importance
As APOE locus variants contribute to both risk of late-onset Alzheimer disease and differences in age-at-onset, it is important to know if other established late-onset Alzheimer disease risk loci also affect age-at-onset in cases.
Objectives
To investigate the effects of known Alzheimer disease risk loci in modifying age-at-onset, and to estimate their cumulative effect on age-at-onset variation, using data from genome-wide association studies in the Alzheimer’s Disease Genetics Consortium (ADGC).
Design, Setting and Participants
The ADGC comprises 14 case-control, prospective, and family-based datasets with data on 9,162 Caucasian participants with Alzheimer’s occurring after age 60 who also had complete age-at-onset information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single nucleotide polymorphisms (SNPs) most significantly associated with risk at ten confirmed LOAD loci were examined in linear modeling of AAO, and individual dataset results were combined using a random effects, inverse variance-weighted meta-analysis approach to determine if they contribute to variation in age-at-onset. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes.
Main Outcomes and Measures
Age at disease onset abstracted from medical records among participants with late-onset Alzheimer disease diagnosed per standard criteria.
Results
Analysis confirmed association of APOE with age-at-onset (rs6857, P=3.30×10−96), with associations in CR1 (rs6701713, P=7.17×10−4), BIN1 (rs7561528, P=4.78×10−4), and PICALM (rs561655, P=2.23×10−3) reaching statistical significance (P<0.005). Risk alleles individually reduced age-at-onset by 3-6 months. Burden analyses demonstrated that APOE contributes to 3.9% of variation in age-at-onset (R2=0.220) over baseline (R2=0.189) whereas the other nine loci together contribute to 1.1% of variation (R2=0.198).
Conclusions and Relevance
We confirmed association of APOE variants with age-at-onset among late-onset Alzheimer disease cases and observed novel associations with age-at-onset in CR1, BIN1, and PICALM. In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on age-at-onset are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on age-at-onset may be significant, additional genetic contributions to age-at-onset are individually likely to be small.
doi:10.1001/jamaneurol.2014.1491
PMCID: PMC4314944  PMID: 25199842
Alzheimer Disease; Alzheimer Disease Genetics; Alzheimer’s Disease - Pathophysiology; Genetics of Alzheimer Disease; Aging
6.  Beta-amyloid toxicity modifier genes and the risk of Alzheimer’s disease 
Late-onset Alzheimer’s disease (LOAD) is a complex and multifactorial disease. So far ten loci have been identified for LOAD, including APOE, PICALM, CLU, BIN1, CD2AP, CR1, CD33, EPHA1, ABCA7, and MS4A4A/MS4A6E, but they explain about 50% of the genetic risk and thus additional risk genes need to be identified. Amyloid beta (Aβ) plaques develop in the brains of LOAD patients and are considered to be a pathological hallmark of this disease. Recently 12 new Aβ toxicity modifier genes (ADSSL1, PICALM, SH3KBP1, XRN1, SNX8, PPP2R5C, FBXL2, MAP2K4, SYNJ1, RABGEF1, POMT2, and XPO1) have been identified that potentially play a role in LOAD risk. In this study, we have examined the association of 222 SNPs in these 12 candidate genes with LOAD risk in 1291 LOAD cases and 958 cognitively normal controls. Single site and haplotype analyses were performed using PLINK. Following adjustment for APOE genotype, age, sex, and principal components, we found single nucleotide polymorphisms (SNPs) in PPP2R5C, PICALM, SH3KBP1, XRN1, and SNX8 that showed significant association with risk of LOAD. The top SNP was located in intron 3 of PPP2R5C (P=0.009017), followed by an intron 19 SNP in PICALM (P=0.0102). Haplotype analysis revealed significant associations in ADSSL1, PICALM, PPP2R5C, SNX8, and SH3KBP1 genes. Our data indicate that genetic variation in these new candidate genes affects the risk of LOAD. Further investigation of these genes, including additional replication in other case-control samples and functional studies to elucidate the pathways by which they affect Aβ, are necessary to determine the degree of involvement these genes have for LOAD risk.
PMCID: PMC3560458  PMID: 22984654
Late-onset Alzheimer’s disease (LOAD); risk genes; SNPs; ADSSL1; PICALM; SH3KBP1; XRN1; SNX8; PPP2R5C; FBXL2; MAP2K4; SYNJ1; RABGEF1; POMT2; XPO1
7.  Identifying genetic interactions associated with late-onset Alzheimer’s disease 
BioData Mining  2014;7:35.
Background
Identifying genetic interactions in data obtained from genome-wide association studies (GWASs) can help in understanding the genetic basis of complex diseases. The large number of single nucleotide polymorphisms (SNPs) in GWASs however makes the identification of genetic interactions computationally challenging. We developed the Bayesian Combinatorial Method (BCM) that can identify pairs of SNPs that in combination have high statistical association with disease.
Results
We applied BCM to two late-onset Alzheimer’s disease (LOAD) GWAS datasets to identify SNPs that interact with known Alzheimer associated SNPs. We also compared BCM with logistic regression that is implemented in PLINK. Gene Ontology analysis of genes from the top 200 dataset SNPs for both GWAS datasets showed overrepresentation of LOAD-related terms. Four genes were common to both datasets: APOE and APOC1, which have well established associations with LOAD, and CAMK1D and FBXL13, not previously linked to LOAD but having evidence of involvement in LOAD. Supporting evidence was also found for additional genes from the top 30 dataset SNPs.
Conclusion
BCM performed well in identifying several SNPs having evidence of involvement in the pathogenesis of LOAD that would not have been identified by univariate analysis due to small main effect. These results provide support for applying BCM to identify potential genetic variants such as SNPs from high dimensional GWAS datasets.
Electronic supplementary material
The online version of this article (doi:10.1186/s13040-014-0035-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13040-014-0035-z
PMCID: PMC4300162  PMID: 25649863
Genome-wide association study; Epistasis; Alzheimer’s disease; Bayesian networks
8.  Comprehensive Evaluation of the Association of APOE Genetic Variation with Plasma Lipoprotein Traits in U.S. Whites and African Blacks 
PLoS ONE  2014;9(12):e114618.
Although common APOE genetic variation has a major influence on plasma LDL-cholesterol, its role in affecting HDL-cholesterol and triglycerides is not well established. Recent genome-wide association studies suggest that APOE also affects plasma variation in HDL-cholesterol and triglycerides. It is thus important to resequence the APOE gene to identify both common and uncommon variants that affect plasma lipid profile. Here, we have sequenced the APOE gene in 190 subjects with extreme HDL-cholesterol levels selected from two well-defined epidemiological samples of U.S. non-Hispanic Whites (NHWs) and African Blacks followed by genotyping of identified variants in the entire datasets (623 NHWs, 788 African Blacks) and association analyses with major lipid traits. We identified a total of 40 sequence variants, of which 10 are novel. A total of 32 variants, including common tagSNPs (≥5% frequency) and all uncommon variants (<5% frequency) were successfully genotyped and considered for genotype-phenotype associations. Other than the established associations of APOE*2 and APOE*4 with LDL-cholesterol, we have identified additional independent associations with LDL-cholesterol. We have also identified multiple associations of uncommon and common APOE variants with HDL-cholesterol and triglycerides. Our comprehensive sequencing and genotype-phenotype analyses indicate that APOE genetic variation impacts HDL-cholesterol and triglycerides in addition to affecting LDL-cholesterol.
doi:10.1371/journal.pone.0114618
PMCID: PMC4264772  PMID: 25502880
9.  Functional polymorphisms of the coagulation factor II gene (F2) and susceptibility to systemic lupus erythematosus (SLE) 
The Journal of rheumatology  2011;38(4):652-657.
Objective
Two F2 functional polymorphisms, rs1799963 (G20210A) and rs3136516 (A19911G), are known to be associated with elevated prothrombin (encoded by F2) levels/activity and thrombosis risk. Since systemic lupus erythematosus (SLE) patients have high risk of thrombosis and accelerated atherosclerosis and also high prevalence of anti-prothrombin antibodies, we hypothesized that these two F2 polymorphisms could affect SLE risk.
Methods
We investigated these polymorphisms in 627 women with SLE (84% Caucasian Americans, 16% African Americans) and 657 female controls (78% Caucasian Americans, 22% African Americans).
Results
While the rs1799963 A allele was almost absent in African Americans, it was present at ~2% frequency in Caucasian Americans and showed no significant association with SLE. The rs3136516 G allele frequency was significantly higher in Caucasian SLE cases than controls (48.4% vs. 43.7%) with a covariate-adjusted odds ratio (OR) of 1.22 (95%CI: 1.03–1.46; P = 0.023). The association was replicated in African Americans (rs3136516 G allele frequency: 91.2% in cases vs. 82.2% in controls) with an adjusted OR of 1.96 (95%CI: 1.08–3.58; P = 0.022). Stratification of Caucasian SLE patients based on the presence or absence of cardiac and vascular events (CVE) revealed stronger association with the CVE-positive SLE subgroup than the CVE-negative SLE subgroup (OR: 1.42 vs. 1.20). Prothrombin activity measurements in a subset of SLE cases demonstrated higher activity in the carriers of the rs3136516 G allele.
Conclusion
Our results suggest a potential role for prothrombin and the crosstalk between hemostatic and immune/inflammatory systems in SLE and SLE-associated cardiovascular events, which warrant further investigation in independent samples.
doi:10.3899/jrheum.100728
PMCID: PMC3073870  PMID: 21239755
lupus; prothrombin; F2; polymorphism; A19911G; G20210A
10.  A Rare Duplication on Chromosome 16p11.2 Is Identified in Patients with Psychosis in Alzheimer's Disease 
PLoS ONE  2014;9(11):e111462.
Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.
doi:10.1371/journal.pone.0111462
PMCID: PMC4224411  PMID: 25379732
11.  The Catechol-O-Methyltransferase Val158Met Polymorphism Modulates Organization of Regional Cerebral Blood Flow Response to Working Memory in Adults 
This study examined the effect of Catechol-O-Methyltransferase (COMT) Val158Met genotypes on the co-activation of brain areas involved in cognition during a working memory (WM) task. The pattern of concomitant region of interest (ROI) activation during WM performance varied by genotype: Val/Val showing the least and Met/Met the most covariance. There were no differences of performance on the WM task between the COMT genotypes. However, relatively better performance was associated with less concomitance of dorsolateral prefrontal cortex (DLPFC) and cingulate cortex for Val/Val, but more concomitance of DLPFC with AH for Met/Met. Within genotypes WM performance was significantly correlated with rCBF to the amygdala/hippocampus (AH) for Val/Val (r= 0.44, p=0.009), to the parietal lobe for Val/Met (r= 0.29, p=0.03), and to the thalamus for Met/Met (r= 0.32, p= 0.04). Different genotypes showed different regional specificity and concomitant activation patterns suggesting that varying dopamine availability induces different brain processing pathways to achieve similar WM performance.
doi:10.1016/j.ijpsycho.2013.06.023
PMCID: PMC3818354  PMID: 23810996
Catechol-o-methyltransferase (COMT); Dopamine; Working Memory; PET
12.  Functional and genetic characterization of the promoter region of apolipoprotein H (β2-glycoprotein-I) 
The FEBS journal  2010;277(4):951-963.
This study characterized the human apolipoprotein H (APOH, a.k.a. β2-glycoprotein I) promoter and its variants by in vitro functional experiments and investigated their relation with human plasma β2GPI levels. We examined the individual effects of 12 APOH promoter SNPs in the 5' flanking region of APOH (~1.4 kb) on luciferase activity in COS-1 cells and HepG2 cells and their impact on plasma β2GPI levels in 799 U.S. Whites, the DNA-binding properties of APOH promoter using electrophoretic mobility shift assay (EMSA) in HepG2 cells, the effects of serial deletion analysis of APOH 5' flanking region in COS-1 and HepG2 cells, and cross-species conservation of the APOH promoter sequence. The variant alleles of three SNPs (−1219G>A, −643T>C and −32C>A) showed significantly lower luciferase expression (51%, 40% and 37%, respectively) as compared to the wild-type allele. EMSA demonstrated that these three variants specifically bind with protein(s) from HepG2 cell nuclear extracts. Three-site haplotype analysis (−1219G>A, −643T>C, and −32C>A) revealed one haplotype carrying −32A (allele frequency = 0.075) to be significantly associated with decreased plasma β2GPI levels (P < 0.001). Deletion analysis localized the core APOH promoter to ~160 bp upstream of ATG codon with the presence of critical cis-acting elements between −166 and −65. Cross-species conservation analysis of the APOH promoters of 7 species indicated that basic promoter elements are highly conserved across species. In conclusion, we have characterized the functional promoter of APOH and identified functional variants that affect the transcriptional activity of the APOH promoter.
doi:10.1111/j.1742-4658.2009.07538.x
PMCID: PMC2860786  PMID: 20089041
APOH; β2-glycoprotein I; promoter; polymorphisms; association
13.  Identification and characterization of a novel 5 bp deletion in a putative insulin response element in the lipoprotein lipase gene 
Biochimica et biophysica acta  2009;1791(11):1057-1065.
Our aim was to identify an insulin response element (IRE) in the lipoprotein lipase (LPL) gene. We identified a 19 bp sequence as a putative IRE in LPL non-coding exon 10 using bioinformatics. Upon sequencing the IRE region, a novel 5 bp deletion was identified in Hispanics (N=406) with a carrier frequency of 4.2% but not in non-Hispanic whites (N=604) or Africans. Electrophoretic mobility shift assay revealed binding sites for regulatory factor(s) in muscle cell nuclear extracts with putative IRE sequence. Antibody supershift assay using human aorta smooth muscle cell nuclear extract revealed that Elk-1 specifically binds to putative IRE. TaqMan real-time RT-PCR of the 5 bp deletion, the mutant and wild type cDNA expressed in COS-1 and human muscle cells revealed that the 5 bp deletion was associated with modest reduction in LPL expression. There was also a slight reduction in LPL translation in the deletion mutant. Our data suggest the presence of an IRE in the 3′UTR of the LPL gene.
doi:10.1016/j.bbalip.2009.06.003
PMCID: PMC2753688  PMID: 19563912
Lipoprotein lipase; Exon 10 mutation; Electrophoretic mobility shift assay
14.  Association Studies of 22 Candidate SNPs with Late-Onset Alzheimer's Disease 
Alzheimer's disease (AD) is a complex and multifactorial disease with the possible involvement of several genes. With the exception of the APOE gene as a susceptibility marker, no other genes have been shown consistently to be associated with late-onset AD (LOAD). A recent genome-wide association study of 17,343 gene-based putative functional single nucleotide polymorphisms (SNPs) found 19 significant variants, including 3 linked to APOE, showing association with LOAD (Hum Mol Genet 2007; 16:865–873). We have set out to replicate the 16 new significant associations in a large case-control cohort of American Whites. Additionally, we examined six variants present in positional and/or biological candidate genes for AD. We genotyped the 22 SNPs in up to 1,009 Caucasian Americans with LOAD and up to 1,010 age-matched healthy Caucasian Americans, using 5′ nuclease assays. We did not observe a statistically significant association between the SNPs and the risk of AD, either individually or stratified by APOE. Our data suggest that the association of the studied variants with LOAD risk, if it exists, is not statistically significant in our sample.
doi:10.1002/ajmg.b.30851
PMCID: PMC2751631  PMID: 18780302
Alzheimer's disease; genetics; age-at-onset; disease duration
15.  APOH Promoter Polymorphisms in Relation to Lupus and Lupus-Related Phenotypes 
The Journal of rheumatology  2009;36(2):315-322.
Objective
Sequence variation in gene promoters is often associated with disease risk. In this study, we tested the hypothesis that common promoter variation in the APOH gene (encoding for β2-glycoprotein I) is associated with systemic lupus erythematosus (SLE) risk and SLE-related clinical phenotypes in a Caucasian cohort.
Methods
We used a case-control design and genotyped 345 SLE women and 454 healthy control women for 8 APOH promoter single nucleotide polymorphisms (SNPs) (−1284C>G, −1219G>A, −1190G>C, −759 A>G, − 700C>A, −643T>C, −38G>A, and −32C>A). Association analyses were performed on single SNPs and haplotypes. Haplotype analyses were performed using EH (Estimate Haplotype-frequencies) and Haploview programs. In vitro reporter gene assay was performed in COS-1 cells. Electrophoretic mobility shift assay (EMSA) was performed using HepG2 nuclear cells.
Results
Overall haplotype distribution of the APOH promoter SNPs was significantly different between cases and controls (P = 0.009). The −643C allele was found to be protective against carotid plaque formation (adjusted OR = 0.37, P = 0.013) among SLE patients. The −643C allele was associated with a ~ 2-fold decrease in promoter activity as compared to wild-type −643T allele (mean ± standard deviation: 3.94 ± 0.05 vs. 6.99 ± 0.68, P = 0.016). EMSA showed that the −643T>C SNP harbors a binding site for a nuclear factor. The −1219G>A SNP showed a significant association with the risk of lupus nephritis (age-adjusted OR = 0.36, P = 0.016).
Conclusion
Our data indicate that APOH promoter variants may be involved in the etiology of SLE, especially the risk for autoimmune-mediated cardiovascular disease.
doi:10.3899/jrheum.080482
PMCID: PMC2667221  PMID: 19132787
APOH; β2-glycoprotein I; promoter; SLE; lupus; polymorphism
16.  No Association Between CALHM1 Variation and Risk of Alzheimer Disease 
Human mutation  2009;30(4):E566-E569.
A polymorphism in the calcium homeostasis modulator 1 gene (CALHM1) has recently been associated with risk of late-onset Alzheimer disease. We examined this variant (rs2986017) in 945 Caucasian Americans with late-onset Alzheimer disease and 875 age-matched Caucasian American controls. No association with risk of late-onset Alzheimer disease (p = 0.368 for genotypes; p = 0.796 for alleles) was observed in our sample. However, a potential modest association of minor allele homozygosity (TT) with an earlier age-at-onset was seen (p = 0.034).
doi:10.1002/humu.20989
PMCID: PMC2810280  PMID: 19191331
Alzheimer disease; CALHM1; genetic; association
17.  Genetic Variation in the C-Reactive Protein (CRP) Gene may be Associated with the Risk of Systemic Lupus Erythematosus and CRP Levels 
The Journal of rheumatology  2008;35(11):2171-2178.
Objective
The gene coding for C-reactive protein (CRP) is located on chromosome 1q23.2, which falls within a linkage region thought to harbor a systemic lupus erythematosus (SLE) susceptibility gene. Recently, two SNPs in the CRP gene (+838, +2043) have been shown to be associated with CRP levels and/or SLE risk in a British family-based cohort. The current study was done to confirm the reported association in an independent population-based case-control cohort, and also to investigate the impact of three additional CRP tagSNPs (-861, -390, +90) on SLE risk and serum CRP levels.
Methods
DNA from 337 white women who met the ACR criteria for definite (n = 324) or probable (n = 13) SLE and 448 white female healthy controls was genotyped for five CRP tagSNPs (-861, -390, +90, +838, +2043). Genotyping was performed using PCR-RFLP, pyrosequencing or TaqMan assays. Serum CRP levels were measured using ELISA. Association studies were performed using the χ2 distribution, Z-test, Fisher's exact test and ANOVA. Haplotype analysis was performed using EH software and haplo.stats package in R 2.1.2.
Results
While none of the SNPs were found to be associated with SLE risk individually, there was an association with the five-SNP haplotypes (p<0.000001). Three SNPs (-861, -390, +90) were found to significantly influence serum CRP level in SLE cases, both independently and as haplotypes.
Conclusion
Our data suggests that unique haplotype combinations in the CRP gene may modify the risk of developing SLE and influence circulating CRP levels.
PMCID: PMC2582591  PMID: 18793001
18.  Functional Significance of Lipoprotein Lipase HindIII Polymorphism Associated with the Risk of Coronary Artery Disease 
Atherosclerosis  2008;200(1):102-108.
Lipoprotein Lipase (LPL) plays a pivotal role in lipid metabolism by hydrolyzing triglyceride (TG) rich lipoprotein particles. Abnormalities in normal LPL function are associated with the risk of coronary artery disease (CAD). A number of genetic variants have been identified in the LPL gene that affects different functions of the LPL protein. A common HindIII polymorphism in intron 8 (T/G) of the LPL gene has been found to be associated with altered plasma TG and HDL-cholesterol, and CAD risk in several studies, but its functional significance is unknown. It has been shown that certain intronic sequence contain regulatory elements that are important for transcription and translational regulation of a gene. In this study we tested the hypothesis that this polymorphism affects the binding site of a transcription factor that regulates the transcription of LPL gene. Electrophoretic mobility shift assays revealed that the HindIII site binds to a transcription factor and that the mutant allele has lower binding affinity than the wild type allele. Transcription assays containing the entire intron 8 sequence along with full-length human LPL promoter were carried out in COS-1 and human vascular smooth muscle cells. The mutant allele was associated with significantly decreased luciferase expression level compared to the wild type allele in both the muscle (3.394 ± 0.022 vs. 4.184 ± 0.028; P=4.7 × 10−6) and COS-1 (11.603 ± 0.409 vs. 14.373 ± 1.096; P<0.0001) cells. In conclusion, this study demonstrates for the first time that the polymorphic HindIII site in the LPL gene is functional because it affects the binding of a transcription factor and it also has an impact on LPL expression.
doi:10.1016/j.atherosclerosis.2007.12.011
PMCID: PMC2603421  PMID: 18242618
Lipoprotein lipase; HindIII polymorphism; electrophoretic mobility shift assay; luciferase reporter gene assay; coronary artery disease
19.  Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias 
PLoS Genetics  2014;10(9):e1004606.
Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias.
Author Summary
Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study (GWAS), as well as an analysis of known genetic risk loci for AD dementia, using data from 4,914 brain autopsies. Genome-wide significance was observed for 7 genes and pathologic features of AD and related diseases. Twelve of the 22 genetic risk loci for clinically-defined AD dementia were confirmed in our pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for hallmark pathologic features of AD were strongly positive and linear. Our study discovered new genetic associations with specific pathologic features and aligned known genetic risk for AD dementia with specific pathologic changes in a large brain autopsy study of AD and related dementias.
doi:10.1371/journal.pgen.1004606
PMCID: PMC4154667  PMID: 25188341
20.  Cognitive aging in persons with minimal amyloid-beta and white matter hyperintensities 
Neuropsychologia  2013;51(11):2202-2209.
Substantial individual differences exist in the magnitude of the cognitive decline associated with normal aging. Potential contributors to this intersubject variability include white matter hyperintensities (WMH) and preclinical Alzheimer’s disease, evident as increased brain amyloid. This study examined whether older individuals with minimal evidence of WMH and/or brain amyloid-beta (seen on positron emission tomography with the Pittsburgh compound B radiotracer - PiB) still showed significant cognitive decrements compared to the young. Older individuals, conservatively screened for normal range performance on an extensive neuropsychological battery, underwent structural magnetic resonance imaging (MRI) and PiB scans and performed tests of information processing speed, working memory and inhibitory function. The elderly were divided into PiB(+) and PiB(−) groups based on radiotracer retention. There were no significant differences in cognitive performance between PiB(+) and PiB(−) elderly. However, both PiB groups performed significantly worse than did the young on cognitive testing. WMH burden in the same individuals was quantified by consensus ratings using a 10 point scale with a median split defining two groups, WMH(+) and WMH(−). There were no differences in cognitive performance between WMH(+) and WMH(−) individuals, but both WMH groups performed significantly worse than did the young. Older participants who were both PiB(−) and WMH(−) also performed significantly worse than did the young in all three cognitive domains. The present results suggest that normal-elderly individuals whose brain scans show minimal evidence of amyloid deposition or WMH, still demonstrate a major decrement in comparison to younger persons on measures of processing resources and inhibitory efficiency.
doi:10.1016/j.neuropsychologia.2013.07.017
PMCID: PMC3807130  PMID: 23911776
amyloid; white matter hyperintensities; normal aging; cognition
21.  Alpha-1-antichymotrypsin (ACT or SERPINA3) polymorphism may affect age-at-onset and disease duration of Alzheimer’s disease 
Neurobiology of aging  2005;27(10):1435-1439.
In addition to genetic effects on disease risk, age-at-onset (AAO) of Alzheimer’s disease (AD) is also genetically controlled. Using AAO as a covariate, a linkage signal for AD has been detected on chromosome 14q32 near the a1-antichymotrypsin (ACT) gene. Previously, a signal peptide polymorphism (codon -17A>T) in the ACT gene has been suggested to affect AD risk, but with inconsistent findings. Given that a linkage signal for AAO has been detected near ACT, we hypothesized that ACT genetic variation affects AAO rather than disease risk and this may explain the previous inconsistent findings between ACT genetic variation and AD risk. We examined the impact of the ACT signal peptide polymorphism on mean AAO in 909 AD cases. The ACT polymorphism was significantly associated with AAO and this effect was independent of the APOE polymorphism. Mean AAO among ACT/AA homozygotes was significantly lower than that in the combined AT+TT genotype group (p=0.019) and this difference was confined to male AD patients (p=0.002). Among male AD patients, the ACT/AA genotype was also associated with shorter disease duration before death as compared to the ACT/AT + TT genotypes (p=0.012). These data suggest that the ACT gene may affect AAO and disease duration of AD.
doi:10.1016/j.neurobiolaging.2005.07.015
PMCID: PMC1609963  PMID: 16137793
22.  Genetic variation in the choline acetyltransferase (CHAT) gene may be associated with the risk of Alzheimer’s disease 
Neurobiology of aging  2005;27(10):1440-1444.
Several independent linkage studies have mapped a broad susceptibility region for Alzheimer’s disease (AD) on the long arm of chromosome 10. There are several biological candidate genes in this region, including choline acetyltransferase (CHAT). A number of studies have examined the role of CHAT genetic variants with AD risk and age-at-onset (AAO), but the results are equivocal. We examined the association of three Single Nucleotide Polymorphisms (SNPs) in the CHAT gene in 1001 white sporadic late-onset AD (LOAD) cases and 708 white controls. We also examined the role of these three SNP with quantitative traits of AD including AAO, disease duration, and Mini-Mental State Examination (MMSE) score. We observed both allelic and genotypic associations of the intron 9 SNP with AD risk in the total sample (p=0.029 for genotype and p=0.028 for allele frequency differences) as well as among non-APOE*4 carriers (p=0.007 for genotype and p=0.006 for allele frequency differences). Three-site haplotype analysis confirmed that haplotypes determined by the intron 9 SNP were associated with either risk (p=0.0009) or protective (p=0.0082) effects among non-APOE*4 carriers. The three CHAT SNPs also showed a modest association with MMSE score. Our data suggest that genetic variation in the CHAT gene may be associated with AD risk and quantitative traits related to AD.
doi:10.1016/j.neurobiolaging.2005.08.024
PMCID: PMC1609962  PMID: 16223550
Alzheimer’s Disease; Genetics; CHAT; Age-at-onset; MMSE
23.  Rare coding variants in Phospholipase D3 (PLD3) confer risk for Alzheimer's disease 
Nature  2013;505(7484):550-554.
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1,2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low frequency coding variants with large effects on LOAD risk, we performed whole exome-sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large case-control datasets. A rare variant in PLD3 (phospholipase-D family, member 3, rs145999145; V232M) segregated with disease status in two independent families and doubled risk for AD in seven independent case-control series (V232M meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10-5, 11,354 cases and controls of European-descent). Gene-based burden analyses in 4,387 cases and controls of European-descent and 302 African American cases and controls, with complete sequence data for PLD3, indicate that several variants in this gene increase risk for AD in both populations (EA: OR= 2.75, CI=2.05-3.68; p=1.44×10-11, AA: OR= 5.48, CI=1.77-16.92; p=1.40×10-3). PLD3 is highly expressed in brain regions vulnerable to AD pathology, including hippocampus and cortex, and is expressed at lower levels in neurons from AD brains compared to control brains (p=8.10×10-10). Over-expression of PLD3 leads to a significant decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a two-fold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may be used to identify rare variants with large effects on risk for disease or other complex traits.
doi:10.1038/nature12825
PMCID: PMC4050701  PMID: 24336208
24.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease 
Escott-Price, Valentina | Bellenguez, Céline | Wang, Li-San | Choi, Seung-Hoan | Harold, Denise | Jones, Lesley | Holmans, Peter | Gerrish, Amy | Vedernikov, Alexey | Richards, Alexander | DeStefano, Anita L. | Lambert, Jean-Charles | Ibrahim-Verbaas, Carla A. | Naj, Adam C. | Sims, Rebecca | Jun, Gyungah | Bis, Joshua C. | Beecham, Gary W. | Grenier-Boley, Benjamin | Russo, Giancarlo | Thornton-Wells, Tricia A. | Denning, Nicola | Smith, Albert V. | Chouraki, Vincent | Thomas, Charlene | Ikram, M. Arfan | Zelenika, Diana | Vardarajan, Badri N. | Kamatani, Yoichiro | Lin, Chiao-Feng | Schmidt, Helena | Kunkle, Brian | Dunstan, Melanie L. | Vronskaya, Maria | Johnson, Andrew D. | Ruiz, Agustin | Bihoreau, Marie-Thérèse | Reitz, Christiane | Pasquier, Florence | Hollingworth, Paul | Hanon, Olivier | Fitzpatrick, Annette L. | Buxbaum, Joseph D. | Campion, Dominique | Crane, Paul K. | Baldwin, Clinton | Becker, Tim | Gudnason, Vilmundur | Cruchaga, Carlos | Craig, David | Amin, Najaf | Berr, Claudine | Lopez, Oscar L. | De Jager, Philip L. | Deramecourt, Vincent | Johnston, Janet A. | Evans, Denis | Lovestone, Simon | Letenneur, Luc | Hernández, Isabel | Rubinsztein, David C. | Eiriksdottir, Gudny | Sleegers, Kristel | Goate, Alison M. | Fiévet, Nathalie | Huentelman, Matthew J. | Gill, Michael | Brown, Kristelle | Kamboh, M. Ilyas | Keller, Lina | Barberger-Gateau, Pascale | McGuinness, Bernadette | Larson, Eric B. | Myers, Amanda J. | Dufouil, Carole | Todd, Stephen | Wallon, David | Love, Seth | Rogaeva, Ekaterina | Gallacher, John | George-Hyslop, Peter St | Clarimon, Jordi | Lleo, Alberto | Bayer, Anthony | Tsuang, Debby W. | Yu, Lei | Tsolaki, Magda | Bossù, Paola | Spalletta, Gianfranco | Proitsi, Petra | Collinge, John | Sorbi, Sandro | Garcia, Florentino Sanchez | Fox, Nick C. | Hardy, John | Naranjo, Maria Candida Deniz | Bosco, Paolo | Clarke, Robert | Brayne, Carol | Galimberti, Daniela | Scarpini, Elio | Bonuccelli, Ubaldo | Mancuso, Michelangelo | Siciliano, Gabriele | Moebus, Susanne | Mecocci, Patrizia | Zompo, Maria Del | Maier, Wolfgang | Hampel, Harald | Pilotto, Alberto | Frank-García, Ana | Panza, Francesco | Solfrizzi, Vincenzo | Caffarra, Paolo | Nacmias, Benedetta | Perry, William | Mayhaus, Manuel | Lannfelt, Lars | Hakonarson, Hakon | Pichler, Sabrina | Carrasquillo, Minerva M. | Ingelsson, Martin | Beekly, Duane | Alvarez, Victoria | Zou, Fanggeng | Valladares, Otto | Younkin, Steven G. | Coto, Eliecer | Hamilton-Nelson, Kara L. | Gu, Wei | Razquin, Cristina | Pastor, Pau | Mateo, Ignacio | Owen, Michael J. | Faber, Kelley M. | Jonsson, Palmi V. | Combarros, Onofre | O'Donovan, Michael C. | Cantwell, Laura B. | Soininen, Hilkka | Blacker, Deborah | Mead, Simon | Mosley, Thomas H. | Bennett, David A. | Harris, Tamara B. | Fratiglioni, Laura | Holmes, Clive | de Bruijn, Renee F. A. G. | Passmore, Peter | Montine, Thomas J. | Bettens, Karolien | Rotter, Jerome I. | Brice, Alexis | Morgan, Kevin | Foroud, Tatiana M. | Kukull, Walter A. | Hannequin, Didier | Powell, John F. | Nalls, Michael A. | Ritchie, Karen | Lunetta, Kathryn L. | Kauwe, John S. K. | Boerwinkle, Eric | Riemenschneider, Matthias | Boada, Mercè | Hiltunen, Mikko | Martin, Eden R. | Schmidt, Reinhold | Rujescu, Dan | Dartigues, Jean-François | Mayeux, Richard | Tzourio, Christophe | Hofman, Albert | Nöthen, Markus M. | Graff, Caroline | Psaty, Bruce M. | Haines, Jonathan L. | Lathrop, Mark | Pericak-Vance, Margaret A. | Launer, Lenore J. | Van Broeckhoven, Christine | Farrer, Lindsay A. | van Duijn, Cornelia M. | Ramirez, Alfredo | Seshadri, Sudha | Schellenberg, Gerard D. | Amouyel, Philippe | Williams, Julie
PLoS ONE  2014;9(6):e94661.
Background
Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.
Principal Findings
In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10−6) and 14 (IGHV1-67 p = 7.9×10−8) which indexed novel susceptibility loci.
Significance
The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
doi:10.1371/journal.pone.0094661
PMCID: PMC4055488  PMID: 24922517
25.  In vivo assessment of amyloid-β deposition in non-demented very elderly subjects 
Annals of neurology  2013;73(6):751-761.
Objective
This study examined amyloid-β (Aβ) deposition in 190 non-demented subjects aged 82 and older to determine the proportion of Aβ-positive scans and associations with cognition, APOE status, brain volume, and Ginko biloba (Gb) treatment.
Methods
Subjects who agreed to participate had a brain MRI and positron emission tomography scan with 11C-labeled Pittsburgh compound B (PiB) following completion of a Gb treatment clinical trial. The youngest subject in this imaging study was 82, and the mean age of the subjects was 85.5 at the time of the scans;152 (80%) were cognitively normal and 38 (20%) were diagnosed with mild cognitive impairment (MCI)at the time of the PiB study.
Results
A high proportion of the cognitively normal subjects (51%) and MCI subjects (68%) were PiB-positive. The APOE*4 allele was more prevalent in PiB-positive than in PiB-negative subjects (30% vs 6%). Measures of memory, language and attentional functions were worse in PiB-positive than in PiB-negative subjects, when both normal and MCI cases were analyzed together; however no significant associations were observed within either normal or MCI subject groups alone. There was no relationship between Gb treatment and Aβ deposition as determined by PiB.
Interpretation
The data revealed a 55% prevalence of PiB-positivity in non-demented subjects age >80 and 85% PiB-positivity in the APOE*4 non-demented elderly subjects. The findings also showed that long-term exposure to Gb did not affect the prevalence of cerebral Aβ deposition.
doi:10.1002/ana.23797
PMCID: PMC3725727  PMID: 23596051

Results 1-25 (57)