Search tips
Search criteria

Results 1-25 (28)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma 
Cancer research  2012;73(2):571-582.
CXCR2 in non-small cell lung cancer (NSCLC) has been studied mainly in stromal cells and is known to increase tumor inflammation and angiogenesis. Here, we examined the prognostic importance of CXCR2 in NSCLC and the role of CXCR2 and its ligands in lung cancer cells. The effect of CXCR2 expression on tumor cells was studied using stable knockdown clones derived from a murine KRAS/p53-mutant lung adenocarcinoma cell line with high metastatic potential and an orthotopic syngeneic mouse model and in vitro using a CXCR2 small molecule antagonist (SB225002). CXCR2 protein expression was analyzed in tumor cells from 262 NSCLC. Gene expression profiles for CXCR2 and its ligands (CXCR2 axis) were analyzed in 52 human NSCLC cell lines and 442 human lung adenocarcinomas. Methylation of CXCR2 axis promoters was determined in 70 human NSCLC cell lines. Invasion and metastasis were decreased in CXCR2 knockdown clones in vitro and in vivo. SB225002 decreased invasion in vitro. In lung adenocarcinomas, CXCR2 expression in tumor cells was associated with smoking and poor prognosis. CXCR2 axis gene expression profiles in human NSCLC cell lines and lung adenocarcinomas defined a cluster driven by CXCL5 and associated with smoking, poor prognosis and RAS pathway activation. Expression of CXCL5 was regulated by promoter methylation. The CXCR2 axis may be an important target in smoking-related lung adenocarcinoma.
PMCID: PMC3548940  PMID: 23204236
lung cancer; prognosis; metastasis; CXCR2; chemokine
2.  The role of epithelial–mesenchymal transition programming in invasion and metastasis: a clinical perspective 
Epithelial–mesenchymal transition (EMT) is involved in normal developmental cellular processes, but it may also be co-opted by a subset of cancer cells, to enable them to invade and form metastases at distant sites. Several gene transcription factors regulate EMT, including Snail1, Snail2, Zeb1, Zeb2, and Twist; ongoing studies continue to identify and elucidate other drivers. Specific micro ribonucleic acids (RNAs) have also been found to regulate EMT, including the microRNA-200 (miR-200) family, which targets Zeb1/Zeb2. Cancer “stem cells” – with the ability to self-renew and to regenerate all the cell types within the tumor – have been found to express EMT markers, further implicating both cancer stem cells and EMT with metastasis. Microenvironmental cues, including transforming growth factor-β, can direct EMT tumor metastasis, such as by regulating miR-200 expression. In human tumors, EMT markers and regulators may be expressed in a subset of tumor cells, such as in cells at the invasive front or tumor–microenvironment interface, though certain subtypes of cancer can show widespread mesenchymal-like features. In terms of therapeutic targeting of EMT in patients, potential areas of exploration could include targeting the cancer stem cell subpopulation, as well as microRNA-based therapeutics that reintroduce miR-200. This review will examine evidence for a role of EMT in invasion and metastasis, with the focus being on studies in lung and breast cancers. We also carry out analyses of publicly-available gene expression profiling datasets in order to show how EMT-associated genes appear coordinately expressed across human tumor specimens.
PMCID: PMC3754282  PMID: 23986650
EMT; epithelial; mesenchymal transition; tumor microenvironment; miR-200; cancer stem cells
3.  Fibulin-2 Is a Driver of Malignant Progression in Lung Adenocarcinoma 
PLoS ONE  2013;8(6):e67054.
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-of-function experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wild-type littermates, implying that malignant progression was dependent specifically upon tumor cell-derived fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected role in collagen cross-linking and tumor cell adherence to collagen.
PMCID: PMC3677922  PMID: 23785517
4.  A Synthetic Matrix with Independently Tunable Biochemistry and Mechanical Properties to Study Epithelial Morphogenesis and EMT in a Lung Adenocarcinoma Model 
Cancer research  2012;72(22):6013-6023.
Better understanding of the biophysical and biochemical cues of the tumor extracellular matrix environment that influence metastasis may have important implications for new cancer therapeutics. Initial exploration into this question has used naturally derived protein matrices that suffer from variability, poor control over matrix biochemistry, and inability to modify the matrix biochemistry and mechanics. Here, we report the use of a synthetic polymer-based scaffold composed primarily of poly(ethylene glycol), or PEG, modified with bioactive peptides to study murine models of lung adenocarcinoma. In this study, we focus on matrix-derived influences on epithelial morphogenesis of a metastatic cell line (344SQ) that harbors mutations in Kras and p53(trp53) and is prone to a microRNA-200 (miR-200)–dependent epithelial–mesenchymal transition (EMT) and metastasis. The modified PEG hydrogels feature biospecific cell adhesion and cell-mediated proteolytic degradation with independently adjustable matrix stiffness. 344SQ encapsulated in bioactive peptide-modified, matrix metalloproteinase–degradable PEG hydrogels formed lumenized epithelial spheres comparable to that seen with three-dimensional culture in Matrigel. Altering both matrix stiffness and the concentration of cell-adhesive ligand significantly influenced epithelial morphogenesis as manifest by differences in the extent of lumenization, in patterns of intrasphere apoptosis and proliferation, and in expression of epithelial polarity markers. Regardless of matrix composition, exposure to TGF-β induced a loss of epithelial morphologic features, shift in expression of EMT marker genes, and decrease in mir-200 levels consistent with EMT. Our findings help illuminate matrix-derived cues that influence epithelial morphogenesis and highlight the potential utility that this synthetic matrix-mimetic tool has for cancer biology.
PMCID: PMC3632398  PMID: 22952217
5.  Targets of the tumor suppressor gene miR-200 in regulation of the epithelial-mesenchymal transition in cancer 
Cancer research  2011;71(24):7670-7682.
The microRNA-200 family restricts epithelial-mesenchymal transition (EMT) and metastasis in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma. To determine the mechanisms responsible for EMT and metastasis regulated by this microRNA, we conducted a global LC-MS/MS analysis to compare metastatic and non-metastatic murine lung adenocarcinoma cells which had undergone EMT due to loss of miR-200. An analysis of syngeneic tumors generated by these cells identified multiple novel proteins linked to metastasis. In particular, the analysis of conditioned media, cell surface proteins, and whole cell lysates from metastatic and non-metastatic cells revealed large scale modifications in the tumor microenvironment. Specific increases were documented in extracellular matrix proteins, peptidases, and changes in distribution of cell adhesion proteins in the metastatic cell lines. Integrating proteomic data from three sub-proteomes, we defined constituents of a multilayer protein network that both regulated and mediated the effects of transforming growth factor TGFβ. Lastly, we identified extracellular matrix proteins and peptidases that were directly regulated by miR-200. Taken together, our results reveal how expression of miR-200 alters the tumor microenvironment to inhibit the processes of EMT and metastasis.
PMCID: PMC3419137  PMID: 21987723
Proteomics; EMT; metastasis
6.  Human Lung Cancer Cells Grown in an Ex Vivo 3D Lung Model Produce Matrix Metalloproteinases Not Produced in 2D Culture 
PLoS ONE  2012;7(9):e45308.
We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture.
PMCID: PMC3444466  PMID: 23028922
7.  Proliferative Changes in the Bronchial Epithelium of Former Smokers Treated With Retinoids 
Retinoids have shown antiproliferative and chemopreventive activity. We analyzed data from a randomized, placebo-controlled chemoprevention trial to determine whether a 3-month treatment with either 9-cis-retinoic acid (RA) or 13-cis-RA and α-tocopherol reduced Ki-67, a proliferation biomarker, in the bronchial epithelium.
Former smokers (n = 225) were randomly assigned to receive 3 months of daily oral 9-cis-RA (100 mg), 13-cis-RA (1 mg/kg) and α-tocopherol (1200 IU), or placebo. Bronchoscopic biopsy specimens obtained before and after treatment were immunohistochemically assessed for changes in the Ki-67 proliferative index (i.e., percentage of cells with Ki-67–positive nuclear staining) in the basal and parabasal layers of the bronchial epithelium. Per-subject and per–biopsy site analyses were conducted. Multicovariable analyses, including a mixed-effects model and a generalized estimating equations model, were used to investigate the treatment effect (Ki-67 labeling index and percentage of bronchial epithelial biopsy sites with a Ki-67 index ≥ 5%) with adjustment for multiple covariates, such as smoking history and metaplasia. Coefficient estimates and 95% confidence intervals (CIs) were obtained from the models. All statistical tests were two-sided.
In per-subject analyses, Ki-67 labeling in the basal layer was not changed by any treatment; the percentage of subjects with a high Ki-67 labeling in the parabasal layer dropped statistically significantly after treatment with 13-cis-RA and α-tocopherol treatment (P = .04) compared with placebo, but the drop was not statistically significant after 9-cis-RA treatment (P = .17). A similar effect was observed in the parabasal layer in a per-site analysis; the percentage of sites with high Ki-67 labeling dropped statistically significantly after 9-cis-RA treatment (coefficient estimate = −0.72, 95% CI = −1.24 to −0.20; P = .007) compared with placebo, and after 13-cis-RA and α-tocopherol treatment (coefficient estimate = −0.66, 95% CI = −1.15 to −0.17; P = .008).
In per-subject analyses, treatment with 13-cis-RA and α-tocopherol, compared with placebo, was statistically significantly associated with reduced bronchial epithelial cell proliferation; treatment with 9-cis-RA was not. In per-site analyses, statistically significant associations were obtained with both treatments.
PMCID: PMC3441140  PMID: 17971525
8.  ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression 
The Journal of Clinical Investigation  2012;122(9):3170-3183.
Metastatic cancer is extremely difficult to treat, and the presence of metastases greatly reduces a cancer patient’s likelihood of long-term survival. The ZEB1 transcriptional repressor promotes metastasis through downregulation of microRNAs (miRs) that are strong inducers of epithelial differentiation and inhibitors of stem cell factors. Given that each miR can target multiple genes with diverse functions, we posited that the prometastatic network controlled by ZEB1 extends beyond these processes. We tested this hypothesis using a mouse model of human lung adenocarcinoma metastasis driven by ZEB1, human lung carcinoma cells, and human breast carcinoma cells. Transcriptional profiling studies revealed that ZEB1 controls the expression of numerous oncogenic and tumor-suppressive miRs, including miR-34a. Ectopic expression of miR-34a decreased tumor cell invasion and metastasis, inhibited the formation of promigratory cytoskeletal structures, suppressed activation of the RHO GTPase family, and regulated a gene expression signature enriched in cytoskeletal functions and predictive of outcome in human lung adenocarcinomas. We identified several miR-34a target genes, including Arhgap1, which encodes a RHO GTPase activating protein that was required for tumor cell invasion. These findings demonstrate that ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression and provide a compelling rationale to develop miR-34a as a therapeutic agent in lung cancer patients.
PMCID: PMC3428095  PMID: 22850877
9.  A selective small molecule inhibitor of c-Met, PHA-665752, reverses lung premalignancy induced by mutant K-ras 
Molecular Cancer Therapeutics  2008;7(4):952-960.
The c-Met receptor tyrosine kinase has been implicated in cellular transformation induced by mutant Ras, a commonly activated proto-oncogene in non-small cell lung cancer (NSCLC). However, the role of c-Met has not been defined in K-ras-mutant NSCLC, a disease for which no effective targeted therapeutic options currently exist. To acquire a greater understanding of its role, we used genetic and pharmacologic approaches to inhibit c-Met in mice and cultured cells. In KrasLA1 mice, which develop premalignant lung lesions that progress to multifocal lung adenocarcinomas owing to somatic mutations in K-ras, c-Met was expressed in multiple cell types within premalignant lung lesions, and high concentrations of HGF were detected in bronchoalveolar lavage samples. Short-term treatment with PHA-665752, a c-Met inhibitor, decreased the numbers of premalignant lung lesions and induced apoptosis in tumor cells and vascular endothelial cells within lesions. In cell culture, PHA-665752 induced apoptosis of a lung adenocarcinoma cell line derived from KrasLA1 mice (LKR-13) and a murine lung endothelial cell line (MEC). c-Met depletion by siRNA transfection induced apoptosis of MECs but not LKR-13 cells. Collectively, these findings suggest that apoptosis was an on-target effect of PHA-665752 in MECs but not in LKR-13 cells. We conclude that PHA-665752 inhibited lung tumorigenesis in KrasLA1 mice and may provide a novel therapeutic approach to the prevention of K-ras-mutant NSCLC. [Mol Cancer Ther 2008;7(4):952–60]
PMCID: PMC3378059  PMID: 18413809
10.  Intratumoral Epiregulin Is a Marker of Advanced Disease in Non–Small Cell Lung Cancer Patients and Confers Invasive Properties on EGFR-Mutant Cells 
Non–small cell lung cancer (NSCLC) cells with activating epidermal growth factor receptor (EGFR) somatic mutations have unique biological properties, including high expression of the ErbB ligand epiregulin; however, the biological role of epiregulin in these cells has not been elucidated. To examine its role, we used an immunohistochemical approach to detect epiregulin expression in NSCLC biopsy samples and pharmacologic and genetic approaches to inhibit epiregulin in cultured NSCLC cells. In NSCLC biopsy samples, epiregulin was detected in 237 of 366 (64.7%) tumors, which correlated with nodal metastasis and a shorter duration of survival. In EGFR-mutant NSCLC cell lines, treatment with a small-molecule EGFR tyrosine kinase inhibitor diminished mRNA levels of the gene encoding epiregulin (EREG). The ability of EGFR-mutant NSCLC cells to invade through Matrigel in vitro was inhibited by treatment with an anti-epiregulin neutralizing antibody or by transfection with an EREG short hairpin RNA. Collectively, these findings show that epiregulin expression correlated with advanced disease, was EGFR dependent, and conferred invasive properties on NSCLC cells. Additional studies are warranted in NSCLC patients to evaluate whether epiregulin expression predicts the metastatic potential of primary tumors and whether anti-epiregulin treatment strategies are efficacious in the prevention of metastasis.
PMCID: PMC3375599  PMID: 19138957
11.  Bexarotene plus Erlotinib Suppresses Lung Carcinogenesis Independent of KRAS Mutations in Two Clinical Trials and Transgenic Models 
The rexinoid bexarotene represses cyclin D1 by causing its proteasomal degradation. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib represses cyclin D1 via different mechanisms. We conducted a preclinical study and two clinical/translational trials (a window-of-opportunity and phase II) of bexarotene plus erlotinib. The combination repressed growth and cyclin D1 expression in cyclin-E– and KRAS/p53–driven transgenic lung cancer cells. The window-of-opportunity trial in early-stage non-small-cell lung cancer (NSCLC) patients (10 evaluable) repressed cyclin D1 (in tumor biopsies and buccal swabs) and induced necrosis and inflammatory responses including in cases with KRAS mutations. The phase II trial in heavily pre-treated, advanced NSCLC patients (40 evaluable; a median of two prior relapses per patient [range, 0–5]; 21% with prior EGFR-inhibitor therapy) produced three major clinical responses in patients with prolonged progression-free survival (583, 665, and 1460-plus days). Median overall survival was 22 weeks. Hypertriglyceridemia was associated with an increased median overall survival (P = 0.001). Early PET response did not reliably predict clinical response. The combination was generally well tolerated, with toxicities similar to those of the single agents. In conclusion, bexarotene plus erlotinib was active in KRAS-driven lung cancer cells, was biologically active in early-stage mutant-KRAS NSCLC, and was clinically active in advanced, chemotherapy-refractory mutant-KRAS tumors in this study and previous trials. Additional lung cancer therapy or prevention trials with this oral regimen are warranted.
PMCID: PMC3108499  PMID: 21636548
rexinoid; epidermal growth factor receptor-tyrosine kinase inhibitor; cyclin D1; lung cancer
12.  Cell Plasticity in Lung Injury and Repair 
In April 2010, a NIH workshop was convened to discuss the current state of understanding of lung cell plasticity, including the responses of epithelial cells to injury, with the objectives of summarizing what is known, what the field needs to know, and how to get there. The proximal stimulus for this workshop is the body of recent evidence suggesting that plasticity is a prominent but incompletely characterized property of lung epithelial cells, and that a focus on understanding this aspect of epithelial cell biology in particular, may be an important window into disease pathobiology and pathogenesis. In addition to their many vital functions in maintaining tissue homeostasis, epithelial cells have emerged as both a central target of disease initiation and an active contributor to disease progression, making a workshop to investigate the role of cell plasticity in lung injury and repair timely. The workshop was organized around four major themes: lung epithelial cell plasticity, signaling control of plasticity, fibroblast plasticity and crosstalk, and translation to human disease. Although this breakdown was recognized to be somewhat artificial, it was felt that this approach would promote cross-fertilization among groups that ordinarily do not communicate and lend itself to the generation of new approaches. The summary reports of individual group discussions below are followed by consensus priorities and recommendations of the workshop participants.
PMCID: PMC3132783  PMID: 21653526
epithelial-mesenchymal transition (EMT); idiopathic pulmonary fibrosis; cell lineage
13.  Map2k4 Functions as a Tumor Suppressor in Lung Adenocarcinoma and Inhibits Tumor Cell Invasion by Decreasing Peroxisome Proliferator-Activated Receptor γ2 Expression ▿  
Molecular and Cellular Biology  2011;31(21):4270-4285.
MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels.
PMCID: PMC3209326  PMID: 21896780
14.  Dysregulation of Cell Polarity Proteins Synergize with Oncogenes or the Microenvironment to Induce Invasive Behavior in Epithelial Cells 
PLoS ONE  2012;7(4):e34343.
Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines.
PMCID: PMC3329530  PMID: 22529912
15.  miR-200 Inhibits Lung Adenocarcinoma Cell Invasion and Metastasis by Targeting Flt1/VEGFR1 
The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3′-untranslated region (3′-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3′-UTR in reporter assays. Cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1.
PMCID: PMC3232024  PMID: 21115742
16.  The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200–dependent pathway in mice 
The Journal of Clinical Investigation  2011;121(4):1373-1385.
Epithelial tumor cells transit to a mesenchymal state in response to extracellular cues, in a process known as epithelial-to-mesenchymal transition (EMT). The precise nature of these cues has not been fully defined, an important issue given that EMT is an early event in tumor metastasis. Here, we have found that a population of metastasis-prone mouse lung adenocarcinoma cells expresses Notch and Notch ligands and that the Notch ligand Jagged2 promotes metastasis. Mechanistically, Jagged2 was found to promote metastasis by increasing the expression of GATA-binding (Gata) factors, which suppressed expression of the microRNA-200 (miR-200) family of microRNAs that target the transcriptional repressors that drive EMT and thereby induced EMT. Reciprocally, miR-200 inhibited expression of Gata3, which reversed EMT and abrogated metastasis, suggesting that Gata3 and miR-200 are mutually inhibitory and have opposing effects on EMT and metastasis. Consistent with this, high levels of Gata3 expression correlated with EMT in primary tumors from 2 cohorts of lung adenocarcinoma patients. These findings reveal what we believe to be a novel Jagged2/miR-200–dependent pathway that mediates lung adenocarcinoma EMT and metastasis in mice and may have implications for the treatment of human epithelial tumors.
PMCID: PMC3069760  PMID: 21403400
17.  Frequent expression of MAGE1 tumor antigens in bronchial epithelium of smokers without lung cancer 
Melanoma antigens (MAGE) are frequently expressed in lung cancer and are promising targets of anticancer immunotherapy. Our preliminary data suggested that MAGE may be expressed during early lung carcinogenesis, raising the possibility of targeting MAGE as a lung cancer prevention strategy. The purpose of this study was to investigate MAGE activation patterns in the airways of chronic smokers without lung cancer. MAGE-A1, -A3 and -B2 gene expression was determined in bronchial brush cells from chronic former smokers without lung cancer by reverse transcription-PCR (RT-PCR). The results were correlated with clinical parameters. The 123 subjects had a median age of 57 years, a median of 40 pack-years smoking history, and had quit smoking for at least one year prior to enrollment. Among the subjects, 31 (25%), 38 (31%), and 46 (37%) had detectable MAGE-A1, -A3 and -B2 expression, respectively, in their bronchial brush samples. Expression of MAGE-A1 and -B2 positively correlated with pack-years smoking history (P=0.03 and 0.03, respectively). The frequency of expression did not decrease despite a prolonged smoking cessation period. In conclusion, MAGE-A1, -A3 and -B2 genes are frequently expressed in the bronchial epithelial cells of chronic smokers without lung cancer, suggesting that chronic exposure to cigarette smoke activates these genes even before the malignant transformation of bronchial cells in susceptible individuals. Once activated, the expression persists despite long-term smoking cessation. These data support the targeting of MAGE as a novel lung cancer prevention strategy.
PMCID: PMC3440643  PMID: 22977481
melanoma antigens; airway; smokers; lung cancer; prevention
18.  Promotion of Lung Carcinogenesis by Chronic Obstructive Pulmonary Disease–Like Airway Inflammation in a K-ras–Induced Mouse Model 
Lung cancer is the leading cause of cancer deaths in the United States. In addition to genetic abnormalities induced by cigarette smoke, several epidemiologic studies have found that smokers with chronic obstructive pulmonary disease (COPD), an inflammatory disease of the lungs, have an increased risk of lung cancer (1.3- to 4.9-fold) compared to smokers without COPD. This suggests a link between chronic airway inflammation and lung carcinogenesis, independent of tobacco smoke exposure. We studied this association by assaying the inflammatory impact of products of nontypeable Haemophilus influenzae, which colonizes the airways of patients with COPD, on lung cancer promotion in mice with an activated K-ras mutation in their airway epithelium. Two new mouse models of lung cancer were generated by crossing mice harboring the LSL–K-rasG12D allele with mice containing Cre recombinase inserted into the Clara cell secretory protein (CCSP) locus, with or without the neomycin cassette excised (CCSPCre and CCSPCre-Neo, respectively). Lung lesions in CCSPCre-Neo/LSL–K-rasG12D and CCSPCre/LSL–K-rasG12D mice appeared at 4 and 1 month of age, respectively, and were classified as epithelial hyperplasia of the bronchioles, adenoma, and adenocarcinoma. Weekly exposure of CCSPCre/LSL–K-rasG12D mice to aerosolized nontypeable Haemophilus influenzae lysate from age 6–14 weeks resulted in neutrophil/macrophage/CD8 T-cell–associated COPD-like airway inflammation, a 3.2-fold increase in lung surface tumor number (156 ± 9 versus 45 ± 7), and an increase in total lung tumor burden. We conclude that COPD-like airway inflammation promotes lung carcinogenesis in a background of a G12D-activated K-ras allele in airway secretory cells.
PMCID: PMC2660561  PMID: 18927348
K-ras; lung cancer; inflammation
19.  CREB- and NF-κB-Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis 
The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1 β has been reported to promote tumor development. However, the factors mediating IL-1β-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1β are less clear. Here, we report that IL-1β upregulated an array of proangiogenic CXC chemokine genes in NSCLC cell line A549 and in normal human tracheobronchial epithelium (NHTBE) cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in NHTBE cells. Conditioned medium from IL-1β treated A549 cells markedly increased endothelial cell migration, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β-induced CXC chemokine gene overexpression in NSCLC cells was abrogated with the knockdown of CREB or NF-κB. Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities were greatly increased in tumorigenic NSCLC cell line compared with normal, premalignant immortalized or non-tumorigenic cell lines. A disruptor of the interaction between CREB-binding protein (CBP) and transcription factors such as CREB and NF-κB, 2-naphthol-AS-E-phosphate (KG-501), inhibited IL-1β-induced CXC chemokine gene expression and angiogenic activity in NSCLC. We propose that targeting CREB or NF-κB using small molecule inhibitors, such as KG-501, holds promise as a preventive and/or therapeutic approach for NSCLC.
PMCID: PMC2768131  PMID: 19138976
Angiogenesis; chemoprevention; CREB; NF-κB; CXC Chemokine; lung cancer
20.  Pten Inactivation Accelerates Oncogenic K-ras-Initiated Tumorigenesis in a Mouse Model of Lung Cancer 
Cancer research  2008;68(4):1119-1127.
Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively). Lung tumors arose in K-ras mutant, Pten-deficient mice that rapidly obstructed bronchial lumina and replaced alveolar spaces. Relative to K-ras mutant tumors, the K-ras mutant, Pten-deficient tumors exhibited more advanced histologic severity and more prominent inflammation and vascularity. Thus, Pten inactivation cooperated with oncogenic K-ras in promoting lung tumorigenesis.
PMCID: PMC2750029  PMID: 18281487
21.  Identification of Secreted Proteins that Mediate Cell-Cell Interactions in an In Vitro Model of the Lung Cancer Microenvironment 
Cancer research  2008;68(17):7237-7245.
Non-small cell lung cancer (NSCLC) cells with somatic mutations in K-ras recruit to the tumor a variety of cell types (hereafter collectively termed “stromal cells”) that can promote or inhibit tumorigenesis by mechanisms that have not been fully elucidated. Here we postulated that stromal cells in the tumor microenvironment alter the tumor cell secretome, including those proteins required for tumor growth and dissemination, and we developed an in vitro model to test this hypothesis. Co-culturing a murine K-ras-mutant lung adenocarcinoma cell line (LKR-13) with a murine lung stromal cell (macrophage, endothelial cell, or fibroblast) enhanced stromal cell migration, induced endothelial tube formation, increased LKR-13 cell proliferation, and regulated the secretion of proteins involved in angiogenesis, inflammation, cell proliferation, and epithelial-to-mesenchymal transition. Among these proteins, CXCL1 has been reported to promote NSCLC development, whereas interleukin-18 (IL18) has an undefined role. Genetic and pharmacologic strategies to inhibit CXCL1 and IL18 revealed that stromal cell migration, LKR-13 cell proliferation, and LKR-13 cell tumorigenicity required one or both of these proteins. We conclude that stromal cells enhanced LKR-13 cell tumorigenicity partly through their effects on the secretome of LKR-13 cells. Strategies to inhibit tumor/stromal cell interactions may be useful as therapeutic approaches in NSCLC patients.
PMCID: PMC2562343  PMID: 18757440
22.  Tumor-specific apoptosis caused by deletion of the ERBB3 pseudo-kinase in mouse intestinal epithelium 
The Journal of Clinical Investigation  2009;119(9):2702-2713.
Pharmacologic blockade of EGFR or the closely related receptor ERBB2 has modest efficacy against colorectal cancers in the clinic. Although the upregulation of ERBB3, a pseudo-kinase member of the EGFR/ERBB family, is known to contribute to EGFR inhibitor resistance in other cancers, its functions in normal and malignant intestinal epithelium have not been defined. We have shown here that the intestinal epithelium of mice with intestine-specific genetic ablation of Erbb3 exhibits no cytological abnormalities but does exhibit loss of expression of ERBB4 and sensitivity to intestinal damage. By contrast, intestine-specific Erbb3 ablation resulted in almost complete absence of intestinal tumors in the ApcMin mouse model of colon cancer. Unlike nontransformed epithelium lacking ERBB3, intestinal tumors lacking ERBB3 had reduced PI3K/AKT signaling, which led to attenuation of tumorigenesis via a tumor-specific increase in caspase-3–mediated apoptosis. Consistent with the mouse data, which suggest that ERBB3-ERBB4 heterodimers contribute to colon cancer survival, experimentally induced loss of ERBB3 in a KRAS mutant human colon cancer cell line was associated with loss of ERBB4 expression, and siRNA knockdown of either ERBB3 or ERBB4 resulted in elevated levels of apoptosis. These results indicate that the ERBB3 pseudo-kinase has essential roles in supporting intestinal tumorigenesis and suggest that ERBB3 may be a promising target for the treatment of colorectal cancers.
PMCID: PMC2735918  PMID: 19690388
23.  Expression Signatures of Metastatic Capacity in a Genetic Mouse Model of Lung Adenocarcinoma 
PLoS ONE  2009;4(4):e5401.
Non-small cell lung cancer (NSCLC) is the foremost cause of cancer-related death in Western countries, which is due partly to the propensity of NSCLC cells to metastasize. The biologic basis for NSCLC metastasis is not well understood.
Methodology/Principal Findings
Here we addressed this deficiency by transcriptionally profiling tumors from a genetic mouse model of human lung adenocarcinoma that develops metastatic disease owing to the expression of K-rasG12D and p53R172H. We identified 2,209 genes that were differentially expressed in distant metastases relative to matched lung tumors. Mining of publicly available data bases revealed this expression signature in a subset of NSCLC patients who had a poorer prognosis than those without the signature.
These findings provide evidence that K-rasG12D; p53R172H mice recapitulate features of human NSCLC metastasis and will provide a useful platform on which to study the biologic basis for lung adenocarcinoma metastasis and its prevention by novel agents.
PMCID: PMC2671160  PMID: 19404390
24.  Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer 
PLoS ONE  2008;3(5):e2220.
Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined.
Methodology/Principal Findings
We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K.
We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients.
PMCID: PMC2376060  PMID: 18493606
25.  Transcriptional Profiling of Non-Small Cell Lung Cancer Cells with Activating EGFR Somatic Mutations 
PLoS ONE  2007;2(11):e1226.
Activating somatic mutations in epidermal growth factor receptor (EGFR) confer unique biologic features to non-small cell lung cancer (NSCLC) cells, but the transcriptional mediators of EGFR in this subgroup of NSCLC have not been fully elucidated.
Methodology/Principal Findings
Here we used genetic and pharmacologic approaches to elucidate the transcriptomes of NSCLC cell lines. We transcriptionally profiled a panel of EGFR-mutant and -wild-type NSCLC cell lines cultured in the presence or absence of an EGFR tyrosine kinase inhibitor. Hierarchical analysis revealed that the cell lines segregated on the basis of EGFR mutational status (mutant versus wild-type), and expression signatures were identified by supervised analysis that distinguished the cell lines based on mutational status (wild-type versus mutant) and type of mutation (L858R versus Δ746-750). Using an EGFR mutation-specific expression signature as a probe, we mined the gene expression profiles of two independent cohorts of NSCLC patients and found the signature in a subset. EGFR tyrosine kinase inhibitor treatment regulated the expression of multiple genes, and pharmacologic inhibition of the protein products of two of them (PTGS2 and EphA2) inhibited anchorage-independent growth in EGFR-mutant NSCLC cells.
We have elucidated genes not previously associated with EGFR-mutant NSCLC, two of which enhanced the clonogenicity of these cells, distinguishing these mediators from others previously shown to maintain cell survival. These findings have potential clinical relevance given the availability of pharmacologic tools to inhibit the protein products of these genes.
PMCID: PMC2080626  PMID: 18030354

Results 1-25 (28)