PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele 
Human Molecular Genetics  2011;20(20):4056-4068.
Serum urate concentrations are highly heritable and elevated serum urate is a key risk factor for gout. Genome-wide association studies (GWAS) of serum urate in African American (AA) populations are lacking. We conducted a meta-analysis of GWAS of serum urate levels and gout among 5820 AA and a large candidate gene study among 6890 AA and 21 708 participants of European ancestry (EA) within the Candidate Gene Association Resource Consortium. Findings were tested for replication among 1996 independent AA individuals, and evaluated for their association among 28 283 EA participants of the CHARGE Consortium. Functional studies were conducted using 14C-urate transport assays in mammalian Chinese hamster ovary cells. In the discovery GWAS of serum urate, three loci achieved genome-wide significance (P< 5.0 × 10−8): a novel locus near SGK1/SLC2A12 on chromosome 6 (rs9321453, P= 1.0 × 10−9), and two loci previously identified in EA participants, SLC2A9 (P= 3.8 × 10−32) and SLC22A12 (P= 2.1 × 10−10). A novel rare non-synonymous variant of large effect size in SLC22A12, rs12800450 (minor allele frequency 0.01, G65W), was identified and replicated (beta −1.19 mg/dl, P= 2.7 × 10−16). 14C-urate transport assays showed reduced urate transport for the G65W URAT1 mutant. Finally, in analyses of 11 loci previously associated with serum urate in EA individuals, 10 of 11 lead single-nucleotide polymorphisms showed direction-consistent association with urate among AA. In summary, we identified and replicated one novel locus in association with serum urate levels and experimentally characterize the novel G65W variant in URAT1 as a functional allele. Our data support the importance of multi-ethnic GWAS in the identification of novel risk loci as well as functional variants.
doi:10.1093/hmg/ddr307
PMCID: PMC3177647  PMID: 21768215
2.  Primary cilia regulate mTORC1 activity and cell size through Lkb1 
Nature Cell Biology  2010;12(11):1115-1122.
The mTOR pathway is the central regulator of cell size1. External signals from growth factors and nutrients converge on the mTORC1 multi-protein complex to modulate downstream targets, but how the different inputs are integrated and translated into specific cellular responses is incompletely understood2–4. Deregulation of the mTOR pathway occurs in polycystic kidney disease (PKD)5–7, where cilia (filiform sensory organelles) fail to sense urine flow because of inherited mutations in ciliary proteins8. We therefore investigated if cilia have a role in mTOR regulation. Here, we show that ablation of cilia in transgenic mice results in enlarged cells when compared with control animals. In vitro analysis demonstrated that bending of the cilia by flow is required for mTOR downregulation and cell-size control. Surprisingly, regulation of cell size by cilia is independent of flow-induced calcium transients, or Akt. However, the tumour-suppressor protein Lkb1 localises in the cilium, and flow results in increased AMPK phosphorylation at the basal body. Conversely, knockdown of Lkb1 prevents normal cell-size regulation under flow conditions. Our results demonstrate that the cilium regulates mTOR signalling and cell size, and identify the cilium-basal body compartment as a spatially restricted activation site for Lkb1 signalling.
doi:10.1038/ncb2117
PMCID: PMC3390256  PMID: 20972424
3.  Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels 
PLoS ONE  2011;6(5):e20031.
Background
Sperm have but one purpose, to fertilize an egg. In various species including Drosophila melanogaster female sperm storage is a necessary step in the reproductive process. Amo is a homolog of the human transient receptor potential channel TRPP2 (also known as PKD2), which is mutated in autosomal dominant polycystic kidney disease. In flies Amo is required for sperm storage. Drosophila males with Amo mutations produce motile sperm that are transferred to the uterus but they do not reach the female storage organs. Therefore Amo appears to be a mediator of directed sperm motility in the female reproductive tract but the underlying mechanism is unknown.
Methodology/Principal Findings
Amo exhibits a unique expression pattern during spermatogenesis. In spermatocytes, Amo is restricted to the endoplasmic reticulum (ER) whereas in mature sperm, Amo clusters at the distal tip of the sperm tail. Here we show that flagellar localization of Amo is required for sperm storage. This raised the question of how Amo at the rear end of sperm regulates forward movement into the storage organs. In order to address this question, we used in vivo imaging of dual labelled sperm to demonstrate that Drosophila sperm navigate backwards in the female reproductive tract. In addition, we show that sperm exhibit hyperactivation upon transfer to the uterus. Amo mutant sperm remain capable of reverse motility but fail to display hyperactivation and directed movement, suggesting that these functions are required for sperm storage in flies.
Conclusions/Significance
Amo is part of a signalling complex at the leading edge of the sperm tail that modulates flagellar beating and that guides a backwards path into the storage organs. Our data support an evolutionarily conserved role for TRPP2 channels in cilia.
doi:10.1371/journal.pone.0020031
PMCID: PMC3098850  PMID: 21625494
4.  TRPP2 and TRPV4 form a polymodal sensory channel complex 
The Journal of Cell Biology  2008;182(3):437-447.
The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis.
doi:10.1083/jcb.200805124
PMCID: PMC2500130  PMID: 18695040
5.  P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport 
Journal of Clinical Investigation  2003;111(3):371-379.
Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes.
doi:10.1172/JCI200316711
PMCID: PMC151859  PMID: 12569163

Results 1-5 (5)