Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Potential for Dietary ω-3 Fatty Acids to Prevent Nonalcoholic Fatty Liver Disease and Reduce the Risk of Primary Liver Cancer123 
Advances in Nutrition  2015;6(6):694-702.
Nonalcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity, and its prevalence is anticipated to increase as the obesity epidemic remains unabated. NAFLD is now the most common cause of chronic liver disease in developed countries and is defined as excessive lipid accumulation in the liver, that is, hepatosteatosis. NAFLD ranges in severity from benign fatty liver to nonalcoholic steatohepatitis (NASH), and NASH is characterized by hepatic injury, inflammation, oxidative stress, and fibrosis. NASH can progress to cirrhosis, and cirrhosis is a risk factor for primary hepatocellular carcinoma (HCC). The prevention of NASH will lower the risk of cirrhosis and NASH-associated HCC. Our studies have focused on NASH prevention. We developed a model of NASH by using mice with the LDL cholesterol receptor gene ablated fed the Western diet (WD). The WD induces a NASH phenotype in these mice that is similar to that seen in humans and includes robust induction of hepatic steatosis, inflammation, oxidative stress, and fibrosis. With the use of transcriptomic, lipidomic, and metabolomic approaches, we examined the capacity of 2 dietary ω-3 (n–3) polyunsaturated fatty acids, eicosapentaenoic acid (20:5ω-3; EPA) and docosahexaenoic acid (22:6ω-3; DHA), to prevent WD-induced NASH. Dietary DHA was superior to EPA at attenuating WD-induced changes in plasma lipids and hepatic injury and at reversing WD effects on hepatic metabolism, oxidative stress, and fibrosis. The outcome of these studies suggests that DHA may be useful in preventing NASH and reducing the risk of HCC.
PMCID: PMC4642422  PMID: 26567194
fatty liver disease; liver cancer; inflammation; oxidative stress; fibrosis; metabolomics; ω-3 PUFAs
2.  Impact of dietary fat on the development of non-alcoholic fatty liver disease in Ldlr−/− mice 
The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased in parallel with central obesity and is now the most common chronic liver disease in developed countries. NAFLD is defined as excessive accumulation of lipid in the liver, i.e. hepatosteatosis. The severity of NAFLD ranges from simple fatty liver (steatosis) to non-alcoholic steatohepatitis (NASH). Simple steatosis is relatively benign until it progresses to NASH, which is characterised by hepatic injury, inflammation, oxidative stress and fibrosis. Hepatic fibrosis is a risk factor for cirrhosis and primary hepatocellular carcinoma. Our studies have focused on the impact of diet on the onset and progression of NASH. We developed a mouse model of NASH by feeding Ldlr−/− mice a western diet (WD), a diet moderately high in saturated and trans-fat, sucrose and cholesterol. The WD induced a NASH phenotype in Ldlr−/− mice that recapitulates many of the clinical features of human NASH. We also assessed the capacity of the dietary n-3 PUFA, i.e. EPA (20 : 5,n-3) and DHA (22 : 6,n-3), to prevent WD-induced NASH in Ldlr−/− mice. Histologic, transcriptomic, lipidomic and metabolomic analyses established that DHA was equal or superior to EPA at attenuating WD-induced dyslipidemia and hepatic injury, inflammation, oxidative stress and fibrosis. Dietary n-3 PUFA, however, had no significant effect on WD-induced changes in body weight, body fat or blood glucose. These studies provide a molecular and metabolic basis for understanding the strengths and weaknesses of using dietary n-3 PUFA to prevent NASH in human subjects.
PMCID: PMC4720541  PMID: 26282529
Non-alcoholic steatohepatitis; Inflammation; Oxidative stress; Fibrosis; n-3 PUFA
3.  Is Western Diet-Induced Nonalcoholic Steatohepatitis in Ldlr-/- Mice Reversible? 
PLoS ONE  2016;11(1):e0146942.
Nonalcoholic fatty liver disease (NAFLD) is a major public health burden in western societies. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), is characterized by hepatosteatosis, inflammation, oxidative stress, and hepatic damage that can progress to fibrosis and cirrhosis; risk factors for hepatocellular carcinoma. Given the scope of NASH, validating treatment protocols (i.e., low fat diets and weight loss) is imperative.
We evaluated the efficacy of two diets, a non-purified chow (NP) and purified (low-fat low-cholesterol, LFLC) diet to reverse western diet (WD)-induced NASH and fibrosis in Ldlr-/- mice.
Mice fed WD for 22–24 weeks developed robust hepatosteatosis with mild fibrosis, while mice maintained on the WD an additional 7–8 weeks developed NASH with moderate fibrosis. Returning WD-fed mice to the NP or LFLC diets significantly reduced body weight and plasma markers of metabolic syndrome (dyslipidemia, hyperglycemia) and hepatic gene expression markers of inflammation (Mcp1), oxidative stress (Nox2), fibrosis (Col1A, LoxL2, Timp1) and collagen crosslinking (hydroxyproline). Time course analyses established that plasma triglycerides and hepatic Col1A1 mRNA were rapidly reduced following the switch from the WD to the LFLC diet. However, hepatic triglyceride content and fibrosis did not return to normal levels 8 weeks after the change to the LFLC diet. Time course studies further revealed a strong association (r2 ≥ 0.52) between plasma markers of inflammation (TLR2 activators) and hepatic fibrosis markers (Col1A, Timp1, LoxL2). Inflammation and fibrosis markers were inversely associated (r2 ≥ 0.32) with diet-induced changes in hepatic ω3 and ω6 polyunsaturated fatty acids (PUFA) content.
These studies establish a temporal link between plasma markers of inflammation and hepatic PUFA and fibrosis. Low-fat low-cholesterol diets promote reversal of many, but not all, features associated with WD-induced NASH and fibrosis in Ldlr-/- mice.
PMCID: PMC4711955  PMID: 26761430
4.  Novel liquid chromatography–mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos☆ 
Redox Biology  2013;2:105-113.
To test the hypothesis that embryogenesis depends upon α-tocopherol (E) to protect embryo polyunsaturated fatty acids (PUFAs) from lipid peroxidation, new methodologies were applied to measure α-tocopherol and fatty acids in extracts from saponified zebrafish embryos. A solid phase extraction method was developed to separate the analyte classes, using a mixed mode cartridge (reverse phase, π–π bonding, strong anion exchange), then α-tocopherol and cholesterol were measured using standard techniques, while the fatty acids were quantitated using a novel, reverse phase liquid chromatography–mass spectrometry (LC–MS) approach. We also determined if α-tocopherol status alters embryonic lipid peroxidation products by analyzing 24 different oxidized products of arachidonic or docosahexaenoic (DHA) acids in embryos using LC with hybrid quadrupole-time of flight MS. Adult zebrafish were fed E− or E+ diets for 4 months, and then were spawned to obtain E− and E+ embryos. Between 24 and 72 hours post-fertilization (hpf), arachidonic acid decreased 3-times faster in E− (21 pg/h) compared with E+ embryos (7 pg/h, P<0.0001), while both α-tocopherol and DHA concentrations decreased only in E− embryos. At 36 hpf, E− embryos contained double the 5-hydroxy-eicosatetraenoic acids and 7-hydroxy-DHA concentrations, while other hydroxy-lipids remained unchanged. Vitamin E deficiency during embryogenesis depleted DHA and arachidonic acid, and increased hydroxy-fatty acids derived from these PUFA, suggesting that α-tocopherol is necessary to protect these critical fatty acids.
Graphical abstract
•α-Tocopherol and fatty acids were measured using a novel extraction and LCMS methodology.•Oxidation products of arachidonic or docosahexaenoic acids were analyzed in embryo extracts using UPLC with hybrid quadrupole-time of flight MS.•Embryogenesis depletes arachidonic and docosahexaenoic acids, but these disappear faster, when α-tocopherol is insufficient to prevent lipid peroxidation.
PMCID: PMC3887274  PMID: 24416717
ARA, 20:4 ω-6, arachidonic acid; CNS, central nervous system; dn, deuterium-labeled; δT3, delta-tocotrienol; DHA, 22:6 ω-3, docosahexaenoic acid; hpf, hours post-fertilization; HETEs, hydroxy-eicosatetraenoic acids; HDHA, hydroxy-DHA; LTA4, leukotriene A4; Vitamin E; Embryogenesis; Neurogenesis; Arachidonic acid; Hybrid quadrupole-time of flight MS
5.  Fatty acid regulation of hepatic lipid metabolism 
Purpose of review
To discuss transcriptional mechanisms regulating hepatic lipid metabolism.
Recent findings
Humans who are obese or have diabetes (NIDDM) or metabolic syndrome (MetS) have low blood and tissue levels of C20–22 polyunsaturated fatty acids (PUFAs). Although the impact of low C20–22 PUFAs on disease progression in humans is not fully understood, studies with mice have provided clues suggesting that impaired PUFA metabolism may contribute to the severity of risk factors associated with NIDDM and MetS. High fat diets promote hyperglycemia, insulin resistance and fatty liver in C57BL/6J mice, an effect that correlates with suppressed expression of enzymes involved in PUFA synthesis and decreased hepatic C20–22 PUFA content. A/J mice, in contrast, are resistant to diet-induced obesity and diabetes; these mice have elevated expression of hepatic enzymes involved in PUFA synthesis and C20–22 PUFA content. Moreover, loss-of-function and gain-of-function studies have identified fatty acid elongase (Elovl5), a key enzyme involved in PUFA synthesis, as a regulator of hepatic lipid and carbohydrate metabolism. Elovl5 activity regulates hepatic C20–22 PUFA content, signaling pathways (Akt and PP2A) and transcription factors (SREBP-1, PPARα, FoxO1 and PGC1α) that control fatty acid synthesis and gluconeogenesis.
These studies may help define novel strategies to control fatty liver and hyperglycemia associated with NIDDM and MetS.
PMCID: PMC3356999  PMID: 21178610
fatty acid elongation; fatty acid synthesis and oxidation; fatty liver; FoxO1; gluconeogenesis; VLDL metabolism
6.  Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation 
Biochemical pharmacology  2010;81(5):649-660.
Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids.
PMCID: PMC3031740  PMID: 21184748
acetyl CoA carboxylase; soraphen A; de novo lipogenesis; fatty acid elongation; fatty acid desaturation; fatty acid oxidation
7.  N-3 polyunsaturated fatty acid regulation of hepatic gene transcription 
Current opinion in lipidology  2008;19(3):242-247.
Purpose of review
The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription.
Recent findings
Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism.
These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks.
PMCID: PMC2764370  PMID: 18460914
carbohydrate regulatory element binding protein; hepatic fatty acid metabolism; Max-like factor X; peroxisome proliferator activated receptor; polyunsaturated fatty acid α; sterol regulatory element binding protein-1
8.  Fatty Acid–Regulated Transcription Factors in the Liver 
Annual review of nutrition  2013;33:249-269.
Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population.
PMCID: PMC3940310  PMID: 23528177
fatty acids; gene transcription; nuclear receptors; membrane receptors; cell signaling; oxidized fatty acids
9.  Docosahexaenoic Acid (DHA) and Hepatic Gene Transcription1,3 
The type and quantity of dietary fat ingested contributes to the onset and progression of chronic diseases, like diabetes and atherosclerosis. The liver plays a central role in whole body lipid metabolism and responds rapidly to changes in dietary fat composition. Polyunsaturated fatty acids (PUFA) play a key role in membrane composition and function, metabolism and the control of gene expression. Certain PUFA, like the n-3 PUFA, enhance hepatic fatty acid oxidation and inhibit fatty acid synthesis and VLDL secretion, in part, by regulating gene expression. Our studies have established that key transcription factors, like PPARα, SREBP-1, ChREBP and MLX, are regulated by n-3 PUFA, which in turn control levels of proteins involved in lipid and carbohydrate metabolism. Of the n-3 PUFA, 22:6,n-3 has recently been established as a key controller of hepatic lipid synthesis. 22:6,n-3 controls the 26S proteasomal degradation of the nuclear form of SREBP-1. SREBP-1 is a major transcription factor that controls the expression of multiple genes involved fatty acid synthesis and desaturation. 22:6,n-3 suppresses nuclear SREBP-1 which, in turn suppresses lipogenesis. This mechanism is achieved, in part, through control of the phosphorylation status of protein kinases. This review will examine both the general features of PUFA-regulated hepatic gene transcription and highlight the unique mechanisms by which 22:6,n-3 impacts gene expression. The outcome of this analysis will reveal that changes in hepatic 22:6,n-3 content has a major impact on hepatic lipid and carbohydrate metabolism. Moreover, the mechanisms involve 22:6,n-3 control of several well-known signaling pathways, such as Akt, Erk1/2, Gsk3β and PKC (novel or atypical). 22:6,n-3 control of these same signaling pathways in non-hepatic tissues may help explain the diverse actions of n-3 PUFA on such complex physiological processes as visual acuity and learning.
PMCID: PMC2430187  PMID: 18343222
docosahexaenoic acid (22:6,n-3); PPARα; SREBP-1; ChREBP; MLX; gene transcription; hepatic fatty acid metabolism
10.  A Metabolomic Analysis of Omega-3 Fatty Acid-Mediated Attenuation of Western Diet-Induced Nonalcoholic Steatohepatitis in LDLR-/- Mice 
PLoS ONE  2013;8(12):e83756.
Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR-/- mice.
Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism.
Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress.
DHA regulation of hepatic SFA, MUFA, PUFA, sphingomyelin, PUFA-derived oxidized lipids and S-lactoylglutathione may explain the protective effects of DHA against WD-induced NASH in LDLR-/- mice.
PMCID: PMC3866250  PMID: 24358308
11.  Growth Hormone Regulates the Balance Between Bone Formation and Bone Marrow Adiposity 
Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17β -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation. © 2010 American Society for Bone and Mineral Research
PMCID: PMC3153330  PMID: 19821771
osteoblasts; adipocytes; IGF-1; estrogen; parathyroid hormone
12.  Remodeling of Retinal Fatty Acids in an Animal Model of Diabetes 
Diabetes  2009;59(1):219-227.
The results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort study revealed a strong association between dyslipidemia and the development of diabetic retinopathy. However, there are no experimental data on retinal fatty acid metabolism in diabetes. This study determined retinal-specific fatty acid metabolism in control and diabetic animals.
Tissue gene and protein expression profiles were determined by quantitative RT-PCR and Western blot in control and streptozotocin-induced diabetic rats at 3–6 weeks of diabetes. Fatty acid profiles were assessed by reverse-phase high-performance liquid chromatography, and phospholipid analysis was performed by nano-electrospray ionization tandem mass spectrometry.
We found a dramatic difference between retinal and liver elongase and desaturase profiles with high elongase and low desaturase gene expression in the retina compared with liver. Elovl4, an elongase expressed in the retina but not in the liver, showed the greatest expression level among retinal elongases, followed by Elovl2, Elovl1, and Elovl6. Importantly, early-stage diabetes induced a marked decrease in retinal expression levels of Elovl4, Elovl2, and Elovl6. Diabetes-induced downregulation of retinal elongases translated into a significant decrease in total retinal docosahexaenoic acid, as well as decreased incorporation of very-long-chain polyunsaturated fatty acids (PUFAs), particularly 32:6n3, into retinal phosphatidylcholine. This decrease in n3 PUFAs was coupled with inflammatory status in diabetic retina, reflected by an increase in gene expression of proinflammatory markers interleukin-6, vascular endothelial growth factor, and intercellular adhesion molecule-1.
This is the first comprehensive study demonstrating diabetes-induced changes in retinal fatty acid metabolism. Normalization of retinal fatty acid levels by dietary means or/and modulating expression of elongases could represent a potential therapeutic target for diabetes-induced retinal inflammation.
PMCID: PMC2797925  PMID: 19875612
13.  Regulation of Rat Hepatic L-Pyruvate Kinase Promoter Composition and Activity by Glucose, n-3 Polyunsaturated Fatty Acids, and Peroxisome Proliferator-activated Receptor-α Agonist*S 
The Journal of biological chemistry  2006;281(27):18351-18362.
Carbohydrate regulatory element-binding protein (ChREBP), MAX-like factor X(MLX), and hepatic nuclear factor-4α (HNF-4α)are key transcription factors involved in the glucose-mediated induction of hepatic L-type pyruvate kinase (L-PK) gene transcription. n-3 polyunsaturated fatty acids (PUFA) and WY14643 (peroxisome proliferator-activated receptor α (PPARα) agonist) interfere with glucose-stimulated L-PK gene transcription in vivo and in rat primary hepatocytes. Feeding rats a diet containing n-3 PUFA or WY14643 suppressed hepatic mRNAL-PK but did not suppress hepatic ChREBP or HNF-4α nuclear abundance. Hepatic MLX nuclear abundance, however, was suppressed by n-3 PUFA but not WY14643. In rat primary hepatocytes, glucose-stimulated accumulation of mRNALPK and L-PK promoter activity correlated with increased ChREBP nuclear abundance. This treatment also increased L-PK promoter occupancy by RNA polymerase II (RNA pol II), acetylated histone H3 (Ac-H3), and acetylated histone H4 (Ac-H4) but did not significantly impact L-PK promoter occupancy by ChREBP or HNF-4α. Inhibition of L-PK promoter activity by n-3 PUFA correlated with suppressed RNA pol II, Ac-H3, and Ac-H4 occupancy on the L-PK promoter. Although n-3 PUFA transiently suppressed ChREBP and MLX nuclear abundance, this treatment did not impact ChREBP-LPK promoter interaction. HNF4α-LPK promoter interaction was transiently suppressed by n-3 PUFA. Inhibition of L-PK promoter activity by WY14643 correlated with a transient decline in ChREBP nuclear abundance and decreased Ac-H4 interaction with the L-PK promoter. WY14643, however, had no impact on MLX nuclear abundance or HNF4α-LPK promoter interaction. Although overexpressed ChREBP or HNF-4α did not relieve n-3 PUFA suppression of L-PK gene expression, overexpressed MLX fully abrogated n-3 PUFA suppression of L-PK promoter activity and mRNAL-PK abundance. Overexpressed ChREBP, but not MLX, relieved the WY14643 inhibition of L-PK. In conclusion, n-3 PUFA and WY14643/PPARα target different transcription factors to control L-PK gene transcription. MLX, the heterodimer partner for ChREBP, has emerged as a novel target for n-3 PUFA regulation.
PMCID: PMC2766394  PMID: 16644726
14.  Mammalian Fatty Acid Elongases 
Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular lipids. The overall reaction for fatty acid elongation involves four enzymes and utilizes malonyl CoA, NADPH, and fatty acyl CoA as substrates. While the fundamental pathway and its requirements have been known for many years, recent advances have revealed a family of enzymes involved in the first step of the reaction, i.e., the condensation reaction. Seven fatty acid elongase subtypes (Elovl #1–7) have been identified in the mouse, rat, and human genomes. These enzymes determine the rate of overall fatty acid elongation. Moreover, these enzymes also display differential substrate specificity, tissue distribution, and regulation, making them important regulators of cellular lipid composition as well as specific cellular functions. Herein, methods are described to measure elongase activity, analyze elongation products, and alter cellular elongase expression.
PMCID: PMC2764369  PMID: 19763486
Fatty acid elongase; Microsome; Reverse phase-high performance liquid chromatography (RP-HPLC); Recombinant adenovirus
15.  Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity 
Journal of lipid research  2006;47(9):2028-2041.
Fatty acid elongases and desaturases play an important role in hepatic and whole body lipid composition. We examined the role that key transcription factors played in the control of hepatic elongase and desaturase expression. Studies with peroxisome proliferator-activated receptor α (PPARα)-deficient mice establish that PPARα was required for WY14643-mediated induction of fatty acid elongase-5 (Elovl-5), Elovl-6, and all three desaturases [Δ5 desaturase (Δ5D), Δ6D, and Δ9D]. Increased nuclear sterol-regulatory element binding protein-1 (SREBP-1) correlated with enhanced expression of Elovl-6, Δ5D, Δ6D, and Δ9D. Only Δ9D was also regulated independently by liver X receptor (LXR) agonist. Glucose induction of L-type pyruvate kinase, Δ9D, and Elovl-6 expression required the carbohydrate-regulatory element binding protein/MAX-like factor X (ChREBP/MLX) heterodimer. Suppression of Elovl-6 and Δ9D expression in livers of streptozotocin-induced diabetic rats and high fat-fed glucose-intolerant mice correlated with low levels of nuclear SREBP-1. In leptin-deficient obese mice (Lepob/ob), increased SREBP-1 and MLX nuclear content correlated with the induction of Elovl-5, Elovl-6, and Δ9D expression and the massive accumulation of monoun-saturated fatty acids (18:1,n-7 and 18:1,n-9) in neutral lipids. Diabetes- and obesity-induced changes in hepatic lipid composition correlated with changes in elongase and desaturase expression. In conclusion, these studies establish a role for PPARα, LXR, SREBP-1, ChREBP, and MLX in the control of hepatic fatty acid elongase and desaturase expression and lipid composition.
PMCID: PMC2764365  PMID: 16790840
peroxisome proliferator-activated receptor α; sterol-regulatory element binding protein-1; carbohydrate-regulatory element binding protein; MAX-like factor X; liver X receptor
16.  Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways 
Journal of lipid research  2005;47(1):181-192.
Insulin induces and dietary n-3 PUFAs suppress hepatic de novo lipogenesis by controlling sterol-regulatory element binding protein-1 nuclear abundance (nSREBP-1). Our goal was to define the mechanisms involved in this regulatory process. Insulin treatment of rat primary hepatocytes rapidly augments nSREBP-1 and mRNASREBP-1c while suppressing mRNAInsig-2 but not mRNAInsig-1. These events are preceded by rapid but transient increases in Akt and Erk phosphorylation. Removal of insulin from hepatocytes leads to a rapid decline in nSREBP-1 [half-time (T1/2) ~ 10 h] that is abrogated by inhibitors of 26S proteasomal degradation. 22:6,n-3, the major n-3 PUFA accumulating in livers of fish oil-fed rats, suppresses hepatocyte levels of nSREBP-1, mRNASREBP-1c, and mRNAInsig-2 but modestly and transiently induces mRNAInsig-1. More importantly, 22:6,n-3 accelerates the disappearance of hepatocyte nSREBP-1 (T1/2 ~ 4 h) through a 26S proteasome-dependent process. 22:6,n-3 has minimal effects on microsomal SREBP-1 and sterol-regulatory element binding protein cleavage-activating protein or nuclear SREBP-2. 22:6,n-3 transiently inhibits insulin-induced Akt phosphorylation but induces Erk phosphorylation. Inhibitors of Erk phosphorylation, but not overexpressed constitutively active Akt, rapidly attenuate 22:6,n-3 suppression of nSREBP-1. Thus, 22:6,n-3 suppresses hepatocyte nSREBP-1 through 26S proteasome- and Erk-dependent pathways. These studies reveal a novel mechanism for n-3 PUFA regulation of hepatocyte nSREBP-1 and lipid metabolism.—Botolin, D., Y. Wang, B. Christian, and D. B. Jump. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways.
PMCID: PMC2764363  PMID: 16222032
sterol regulatory element binding protein-1; Insig-1; Insig-2
17.  Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases 
Journal of lipid research  2005;46(4):706-715.
Of the six fatty acid elongase (Elovl) subtypes expressed in mammals, adult rat liver expresses four subtypes: Elovl-5 > Elovl-1 = Elovl-2 = Elovl-6. Overnight starvation and fish oil-enriched diets repressed hepatic elongase activity in livers of adult male rats. Diet-induced changes in elongase activity correlate with Elovl-5 and Elovl-6 mRNA abundance. Adult rats fed the peroxisome proliferator-activated receptor α (PPARα) agonist WY14,643 have increased hepatic elongase activity, Elovl-1, Elovl-5, Elovl-6, Δ5, Δ6, and Δ9 desaturase mRNA abundance, and mead acid (20:3,n-9) content. PPARα agonists affect both fatty acid elongation and desaturation pathways leading to changes in hepatic lipid composition. Elovl activity is low in fetal liver but increases significantly after birth. Developmental changes in hepatic elongase activity paralleled the postnatal induction of Elovl-5 mRNA and mRNAs encoding the PPARα-regulated transcripts, Δ5 and Δ6 desaturase, and cytochrome P450 4A. In contrast, Elovl-6, Δ9 desaturase, and FAS mRNA abundance paralleled changes in hepatic sterol regulatory element binding protein 1c (SREBP-1c) nuclear content. SREBP-1c is present in fetal liver nuclei, absent from nuclei immediately after birth, and reappears in nuclei at weaning, 21 days postpartum. In conclusion, changes in Elovl-5 expression may account for much of the nutritional and developmental control of fatty acid elongation activity in the rat liver.
PMCID: PMC2430181  PMID: 15654130
fatty acid desaturase; postnatal development; polyunsaturated fatty acids; peroxisome proliferator-activated receptor α; sterol regulatory element binding protein-1c
18.  Anti-inflammatory Effect of Docosahexaenoic Acid on Cytokine-Induced Adhesion Molecule Expression in Human Retinal Vascular Endothelial Cells 
Docosahexaenoic acid (DHA22:6n3), the principal n3-polyunsaturated fatty acid (PUFA) in the retina, has been shown to have a pronounced anti-inflammatory effect in numerous in vivo and in vitro studies. Despite the importance of vascular inflammation in diabetic retinopathy, the anti-inflammatory role of DHA22:6n3 in cytokine-stimulated human retinal vascular endothelial cells (hRVECs) has not been addressed.
Cytokine-induced expression of cell adhesion molecules (CAMs) was assessed by Western blot. The effect of DHA22:6n3 on cytokine-induced nuclear factor (NF)-κB signaling was analyzed by Western blot analysis and electrophoretic mobility shift assay (EMSA).
Stimulation of hRVECs with VEGF165, TNFα, or IL-1β for 6 to 24 hours caused significant induction of intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression. Pretreatment of the cells with 100 μM of BSA-bound DHA22:6n3 for 24 hours remarkably inhibited cytokine-induced CAM expression. IL-1β, TNFα, and VEGF165 induced nuclear translocation and binding of p65 and p50 NF-κB isoforms to the VCAM-1 promoter. DHA22:6n3 pretreatment inhibited cytokine-induced NF-κB binding by 25% to 40%. Moreover, DHA22:6n3 diminished IL-1β induced phosphorylation of the inhibitor of nuclear factor (NF)-κB (I-κBα), thus preventing its degradation.
IL-1β, TNFα, and VEGF165 induced CAM expression in hRVECs through activation of the NF-κB pathway. DHA22:6n3 inhibited cytokine induced CAM expression through suppression of NF-κB nuclear translocation and upstream I-κBα phosphorylation and degradation. DHA22:6n3 could be an important anti-inflammatory agent in the face of increased cytokine production and CAM expression in the diabetic retina.
PMCID: PMC1378111  PMID: 16249517
19.  Inhibition of Cytokine Signaling in Human Retinal Endothelial Cells through Modification of Caveolae/Lipid Rafts by Docosahexaenoic Acid 
Docosahexaenoic acid (DHA22:6,n3) is the principal n3 polyunsaturated fatty acid (PUFA) in the retina. The authors previously demonstrated that DHA22:6,n3 inhibited cytokine-induced adhesion molecule expression in primary human retinal vascular endothelial (hRVE) cells, the target tissue affected by diabetic retinopathy. Despite the importance of vascular inflammation in diabetic retinopathy, the mechanisms underlying anti-inflammatory effects of DHA22:6,n3 in vascular endothelial cells are not understood. In this study the authors address the hypothesis that DHA22:6,n3 acts through modifying lipid composition of caveolae/lipid rafts, thereby changing the outcome of important signaling events in these specialized plasma membrane microdomains.
hRVE cells were cultured in the presence or absence of DHA22:6,n3. Isolated caveolae/lipid raft–enriched detergent-resistant membrane domains were prepared using sucrose gradient ultracentrifugation. Fatty acid composition and cholesterol content of caveolae/lipid rafts before and after treatment were measured by HPLC. The expression of Src family kinases was assayed by Western blotting and immunohistochemistry.
Disruption of the caveolae/lipid raft structure with a cholesterol-depleting agent, methyl-cyclodextrin (MCD), diminished cytokine-induced signaling in hRVE cells. Growth of hRVE cells in media enriched in DHA22:6,n3 resulted in significant incorporation of DHA22:6,n3 into the major phospholipids of caveolae/lipid rafts, causing an increase in the unsaturation index in the membrane microdomain. DHA22:6,n3 enrichment in the caveolae/raft was accompanied by a 70% depletion of cholesterol from caveolae/lipid rafts and displacement of the SFK, Fyn, and c-Yes from caveolae/lipid rafts. Adding water-soluble cholesterol to DHA22:6,n3-treated cells replenished cholesterol in caveolae/lipid rafts and reversed the effect of DHA22:6,n3 on cytokine-induced signaling.
Incorporation of DHA22:6,n3 into fatty acyl chains of phospholipids in caveolae/lipid rafts, followed by cholesterol depletion and displacement of important signaling molecules, provides a potential mechanism for anti-inflammatory effect of DHA22:6,n3 in hRVE cells.
PMCID: PMC1975816  PMID: 17197511

Results 1-19 (19)