PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Relationship between Abundance and Specific Activity of Bacterioplankton in Open Ocean Surface Waters 
Marine microbial communities are complex and dynamic, and their ecology impacts biogeochemical cycles in pelagic ecosystems. Yet, little is known about the relative activities of different microbial populations within genetically diverse communities. We used rRNA as a proxy for activity to quantify the relative specific activities (rRNA/ribosomal DNA [rDNA or rRNA genes]) of the eubacterial populations and to identify locations or clades for which there are uncouplings between specific activity and abundance. After analyzing 1.6 million sequences from 16S rDNA and rRNA (cDNA) libraries from two euphotic depths from a representative site in the Pacific Ocean, we show that although there is an overall positive relationship between the abundances (rDNAs) and activities (rRNAs) among populations of the bacterial community, for some populations these measures are uncoupled. Different ecological strategies are exemplified by the two numerically dominant clades at this site: the cyanobacterium Prochlorococcus is abundant but disproportionately more active, while the heterotrophic SAR11 is abundant but less active. Other rare populations, such as Alteromonas, have high specific activities in spite of their low abundances, suggesting intense population regulation. More detailed analyses using a complementary quantitative PCR (qPCR)-based approach of measuring relative specific activity for Prochlorococcus populations in the Pacific and Atlantic Oceans also show that specific activity, but not abundance, reflects the key drivers of light and nutrients in this system; our results also suggest substantial top-down regulation (e.g., grazing, viruses, or organismal interactions) or transport (e.g., mixing, immigration, or emigration) of these populations. Thus, we show here that abundance and specific activity can be uncoupled in open ocean systems and that describing both is critical to characterizing microbial communities and predicting marine ecosystem functioning and responses to change.
doi:10.1128/AEM.02155-12
PMCID: PMC3536108  PMID: 23087033
2.  Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean 
Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.
doi:10.1128/AEM.06268-11
PMCID: PMC3318826  PMID: 22307290
3.  Distribution and Diversity of Planktonic Fungi in the West Pacific Warm Pool 
PLoS ONE  2014;9(7):e101523.
Fungi contribute substantially to biogeochemical cycles of terrestrial and marine habitats by decomposing matter and recycling nutrients. Yet, the diversity of their planktonic forms in the open ocean is poorly described. In this study, culture-independent and molecular approaches were applied to investigate fungal diversity and abundance derived from samples collected from a broad swath of the Pacific Warm Pool across major environmental gradients Our results revealed that planktonic fungi were molecularly diverse and their diversity patterns were related to major phytoplankton taxa and various nutrients including nitrate, nitrite, orthophosphate and silicic acid. Over 400 fungal phylotypes were recovered across this region and nearly half of them grouped into two major fungal lineages of Ascomycota and Basidiomycota, whose abundance varied among stations. These results suggest that planktonic fungi are a diverse and integral component of the marine microbial community and should be included in future marine microbial ecosystem models.
doi:10.1371/journal.pone.0101523
PMCID: PMC4081592  PMID: 24992154
4.  Dramatic Variability of the Carbonate System at a Temperate Coastal Ocean Site (Beaufort, North Carolina, USA) Is Regulated by Physical and Biogeochemical Processes on Multiple Timescales 
PLoS ONE  2013;8(12):e85117.
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
doi:10.1371/journal.pone.0085117
PMCID: PMC3866137  PMID: 24358377
5.  Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface 
PLoS ONE  2011;6(2):e16805.
The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species.
doi:10.1371/journal.pone.0016805
PMCID: PMC3033426  PMID: 21304826
6.  Choreography of the Transcriptome, Photophysiology, and Cell Cycle of a Minimal Photoautotroph, Prochlorococcus 
PLoS ONE  2009;4(4):e5135.
The marine cyanobacterium Prochlorococcus MED4 has the smallest genome and cell size of all known photosynthetic organisms. Like all phototrophs at temperate latitudes, it experiences predictable daily variation in available light energy which leads to temporal regulation and partitioning of key cellular processes. To better understand the tempo and choreography of this minimal phototroph, we studied the entire transcriptome of the cell over a simulated daily light-dark cycle, and placed it in the context of diagnostic physiological and cell cycle parameters. All cells in the culture progressed through their cell cycles in synchrony, thus ensuring that our measurements reflected the behavior of individual cells. Ninety percent of the annotated genes were expressed, and 80% had cyclic expression over the diel cycle. For most genes, expression peaked near sunrise or sunset, although more subtle phasing of gene expression was also evident. Periodicities of the transcripts of genes involved in physiological processes such as in cell cycle progression, photosynthesis, and phosphorus metabolism tracked the timing of these activities relative to the light-dark cycle. Furthermore, the transitions between photosynthesis during the day and catabolic consumption of energy reserves at night— metabolic processes that share some of the same enzymes — appear to be tightly choreographed at the level of RNA expression. In-depth investigation of these patterns identified potential regulatory proteins involved in balancing these opposing pathways. Finally, while this analysis has not helped resolve how a cell with so little regulatory capacity, and a ‘deficient’ circadian mechanism, aligns its cell cycle and metabolism so tightly to a light-dark cycle, it does provide us with a valuable framework upon which to build when the Prochlorococcus proteome and metabolome become available.
doi:10.1371/journal.pone.0005135
PMCID: PMC2663038  PMID: 19352512
7.  Facilitation of Robust Growth of Prochlorococcus Colonies and Dilute Liquid Cultures by “Helper” Heterotrophic Bacteria▿  
Applied and Environmental Microbiology  2008;74(14):4530-4534.
Axenic (pure) cultures of marine unicellular cyanobacteria of the Prochlorococcus genus grow efficiently only if the inoculation concentration is large; colonies form on semisolid medium at low efficiencies. In this work, we describe a novel method for growing Prochlorococcus colonies on semisolid agar that improves the level of recovery to approximately 100%. Prochlorococcus grows robustly at low cell concentrations, in liquid or on solid medium, when cocultured with marine heterotrophic bacteria. Once the Prochlorococcus cell concentration surpasses a critical threshold, the “helper” heterotrophs can be eliminated with antibiotics to produce axenic cultures. Our preliminary evidence suggests that one mechanism by which the heterotrophs help Prochlorococcus is the reduction of oxidative stress.
doi:10.1128/AEM.02479-07
PMCID: PMC2493173  PMID: 18502916
8.  Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability 
Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to changes in ambient nitrogen is thus central to understanding its ecology. We quantified changes in MED4 and MIT9313 global mRNA expression, chlorophyll fluorescence, and photosystem II photochemical efficiency (Fv/Fm) along a time series of increasing N starvation. In addition, the global expression of both strains growing in ammonium-replete medium was compared to expression during growth on alternative N sources. There were interstrain similarities in N regulation such as the activation of a putative NtcA regulon during N stress. There were also important differences between the strains such as in the expression patterns of carbon metabolism genes, suggesting that the two strains integrate N and C metabolism in fundamentally different ways.
doi:10.1038/msb4100087
PMCID: PMC1682016  PMID: 17016519
cyanobacteria; interstrain; nitrogen; Prochlorococcus; transcription
9.  Prochlorococcus Ecotype Abundances in the North Atlantic Ocean As Revealed by an Improved Quantitative PCR Method†  
The cyanobacterium Prochlorococcus numerically dominates the photosynthetic community in the tropical and subtropical regions of the world's oceans. Six evolutionary lineages of Prochlorococcus have been described, and their distinctive physiologies and genomes indicate that these lineages are “ecotypes” and should have different oceanic distributions. Two methods recently developed to quantify these ecotypes in the field, probe hybridization and quantitative PCR (QPCR), have shown that this is indeed the case. To facilitate a global investigation of these ecotypes, we modified our QPCR protocol to significantly increase its speed, sensitivity, and accessibility and validated the method in the western and eastern North Atlantic Ocean. We showed that all six ecotypes had distinct distributions that varied with depth and location, and, with the exception of the deeper waters at the western North Atlantic site, the total Prochlorococcus counts determined by QPCR matched the total counts measured by flow cytometry. Clone library analyses of the deeper western North Atlantic waters revealed ecotypes that are not represented in the culture collections with which the QPCR primers were designed, explaining this discrepancy. Finally, similar patterns of relative ecotype abundance were obtained in QPCR and probe hybridization analyses of the same field samples, which could allow comparisons between studies.
doi:10.1128/AEM.72.1.723-732.2006
PMCID: PMC1352191  PMID: 16391112

Results 1-9 (9)