PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Association of KRAS and EGFR Mutations with Survival in Patients with Advanced Lung Adenocarcinomas 
Cancer  2012;119(2):356-362.
Background
Lung adenocarcinomas can be distinguished by identifying mutated driver oncogenes including EGFR and KRAS. Mutations in EGFR are associated with both an improved survival as well as response to treatment with erlotinib and gefitinib. However, the prognostic significance of KRAS has not been evaluated in large numbers of patients and remains controversial. We examined the association of EGFR and KRAS mutations with survival among patients with advanced lung adenocarcinomas.
Methods
We analyzed data from patients with advanced lung adenocarcinomas and known EGFR and KRAS mutation status evaluated between 2002 and 2009. We collected clinical variables including age, gender, Karnofsky Performance Status, smoking history, and treatment history. Overall survival from diagnosis of advanced disease was analyzed using Kaplan-Meier and Cox proportional hazard methods.
Results
We evaluated 1036 patients, including 610 women (59%) and 344 never-smokers (33%). Patients had a median age of 65 (range, 25–92) and the majority (81%) had a KPS ≥80%. In multivariate analysis, EGFR mutations were associated with a longer overall survival (HR= 0.6, p<0.001) and KRAS mutations with a shorter survival (HR=1.21, p=0.048).
Conclusions
KRAS mutations predict shorter survival for patients with advanced lung adenocarcinomas. The presence of EGFR and KRAS mutations define distinct subsets of patients with lung adenocarcinomas, and should be determined in patients upon diagnosis of advanced disease. Clinical trial reports should include EGFR and KRAS mutation status along with other prognostic factors.
doi:10.1002/cncr.27730
PMCID: PMC3966555  PMID: 22810899
non-small cell lung cancer; adenocarcinomas; EGFR; KRAS; survival; prognostic factors
2.  Phase II Trial of Dasatinib for Patients with Acquired Resistance to Treatment with the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors Erlotinib or Gefitinib 
Introduction
Dual inhibition of SRC and EGFR -dependent pathways may overcome acquired resistance to EGFR-TKIs for patients with lung adenocarcinoma with EGFR mutations. The SRC-inhibitor dasatinib demonstrates anti-tumor activity in gefitinib-resistant cells lines and xenografts. Dasatinib is tolerable for patients with advanced non-small cell lung cancer, and in combination with erlotinib.
Methods
We conducted this phase II study of dasatinib 70 mg twice daily in patients with EGFR-mutant lung adenocarcinoma and acquired resistance to EGFR-TKIs. After a protocol amendment based upon evolving data about both drugs, patients received dasatinib at a dose of 100 mg daily with continued erlotinib after developing acquired resistance. Enrolled patients either harbored an activating mutation in EGFR or experienced clinical benefit with single-agent erlotinib or gefitinib, followed by RECIST documented progression while being treated with an EGFR-TKI.
Results
Twenty-one patients were enrolled, nine under the original trial design and 12 after the protocol amendments. We observed no complete or partial responses (0% observed rate, 95% CI 0–18%). The median time to progression was 0.5 months (range 0.2–1.8 months) in patients treated with dasatinib, and 0.9 months (range 0.4–5 months) for patients treated with dasatinib and erlotinib in combination. Pleural effusions and dyspnea were frequent toxicities.
Conclusions
Dasatinib has no activity in patients with EGFR-mutant lung adenocarcinoma with acquired resistance to erlotinib and gefitinib.
doi:10.1097/JTO.0b013e3182161508
PMCID: PMC3230574  PMID: 21623279
3.  Lungs don’t forget: Comparison of the KRAS and EGFR mutation profile and survival of “collegiate smokers” and never smokers with advanced lung cancers 
HYPOTHESIS
We hypothesize that among patients with lung cancers the KRAS/EGFR mutation profile and overall survival of “collegiate smokers” (former smokers who smoked between 101 lifetime cigarettes and 5 pack years) are distinct from those of never smokers and former smokers with ≥ 15 pack years.
METHODS
We collected age, sex, stage, survival, and smoking history for patients evaluated from 2004 to 2009 with advanced stage lung cancers and known KRAS/EGFR status. Mutation profile and overall survival were compared using Fisher’s exact test and log-rank test, respectively.
RESULTS
Data were available for 852 patients with advanced stage lung cancers with known KRAS/EGFR status. 6% were “collegiate smokers”, 36% were never smokers, and 30% were former smokers with ≥ 15 pack years. The mutation profile of “collegiate smokers” (15% KRAS mutations, 27% EGFR mutations) was distinct from those of never smokers (p < .001) and former smokers with ≥ 15 pack years (p < .001)and not significantly different from those of former smokers with 5 to 15 pack years (p = 0.9). Median overall survival for “collegiate smokers” was 25 months, compared to 32 months for never smokers (p = 0.4), 33 months for former smokers with 5–15 pack years (p = 0.48),and 21 months for former smokers with ≥ 15 pack years (p = 0.63).
CONCLUSIONS
“Collegiate smokers” with advanced stage lung cancers represent a distinct subgroup of patients with a higher frequency of KRAS mutations and lower frequency of EGFR mutations compared to never smokers. These observations reinforce the recommendation for routine mutation testing for all patients with lung cancers and that no degree of tobacco exposure is safe.
doi:10.1097/JTO.0b013e31827914ea
PMCID: PMC3534987  PMID: 23242442
Collegiate Smokers; non-small cell lung cancers; epidermal growth factor receptor mutation; KRAS mutation
4.  Driver Mutations Determine Survival in Smokers and Never Smokers with Stage IIIB/IV Lung Adenocarcinomas 
Cancer  2012;118(23):5840-5847.
Background
We previously demonstrated that stage IIIB/IV non-small cell lung cancer (NSCLC) never smokers lived 50% longer than former/current smokers. This observation persisted after adjusting for age, performance status, and gender. We hypothesized that smoking-dependent differences in the distribution of driver mutations might explain differences in prognosis between these subgroups.
Methods
We reviewed 293 never smokers and 382 former/current smokers with lung adenocarcinoma who underwent testing for EGFR and KRAS mutations and rearrangements in ALK between 2009 and 2010. Clinical outcomes and patient characteristics were collected. Survival probabilities were estimated using the Kaplan-Meier method. Group comparison was performed with log-rank tests and Cox proportional hazards methods.
Results
While the overall incidence of these mutations was nearly identical (55% never smokers vs. 57% current/former smokers, p=0.48), there were significant differences in the distribution of mutations between these groups: EGFR mutations- 37% never smokers vs. 14% former/current smokers (p<0.0001); KRAS mutations- 4% never smokers vs. 43% former/current smokers (p<0.0001); ALK rearrangements- 12% never smokers vs. 2% former/current smokers (p<0.0001). Among never smokers and former/current smokers, prognosis differed significantly by genotype. Patients harboring KRAS mutations demonstrated the poorest survival. Smoking status, however, had no influence on survival within each genotype.
Conclusion
Never smokers and former/current smokers with lung adenocarcinomas are not homogeneous subgroups. Each is made up of individuals whose tumors have a unique distribution of driver mutations which are associated with different prognoses, irrespective of smoking history.
doi:10.1002/cncr.27637
PMCID: PMC3424296  PMID: 22605530
non-small cell lung cancer; adenocarcinoma; EGFR; KRAS; ALK; never smoker
5.  Molecular Epidemiology of EGFR and KRAS Mutations in 3026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-related KRAS-mutant Cancers 
Purpose
The molecular epidemiology of most EGFR and KRAS mutations in lung cancer remains unclear.
Experimental Design
We genotyped 3026 lung adenocarcinomas for the major EGFR (exon 19 deletions and L858R) and KRAS (G12, G13) mutations and examined correlations with demographic, clinical and smoking history data.
Results
EGFR mutations were found in 43% of never smokers (NS) and in 11% of smokers. KRAS mutations occurred in 34% of smokers and in 6% of NS. In patients with smoking histories up to 10 pack-years, EGFR predominated over KRAS. Among former smokers with lung cancer, multivariate analysis showed that, independent of pack-years, increasing smoking-free years raise the likelihood of EGFR mutation. NS were more likely than smokers to have KRAS G>A transition mutation (mostly G12D) (58% vs. 20%, p=0.0001). KRAS G12C, the most common G>T transversion mutation in smokers, was more frequent in women (p=0.007) and these women were younger than men with the same mutation (median 65 vs. 69, p=0.0008) and had smoked less.
Conclusions
The distinct types of KRAS mutations in smokers vs. NS suggest that most KRAS-mutant lung cancers in NS are not due to secondhand smoke exposure. The higher frequency of KRAS G12C in women, their younger age, and lesser smoking history together support a heightened susceptibility to tobacco carcinogens.
doi:10.1158/1078-0432.CCR-11-3265
PMCID: PMC3500422  PMID: 23014527
lung cancer; tobacco; EGFR; KRAS; molecular epidemiology
6.  Incidence of EGFR Exon 19 Deletions and L858R in Tumor Specimens From Men and Cigarette Smokers With Lung Adenocarcinomas 
Journal of Clinical Oncology  2011;29(15):2066-2070.
Purpose
EGFR mutations underlie the sensitivity of lung cancers to erlotinib and gefitinib and can occur in any patient with this illness. Here we examine the frequency of EGFR mutations in smokers and men.
Methods
We determined the frequency of EGFR mutations and characterized their association with cigarette smoking status and male sex.
Results
We tested 2,142 lung adenocarcinoma specimens for the presence of EGFR exon 19 deletions and L858R. EGFR mutations were found in 15% of tumors from former smokers (181 of 1,218; 95% CI, 13% to 17%), 6% from current smokers (20 of 344; 95% CI, 4% to 9%), and 52% from never smokers (302 of 580; 95% CI, 48% to 56%; P < .001 for ever v never smokers). EGFR mutations in former or current smokers represented 40% of all those detected (201 of 503; 95% CI, 36% to 44%). EGFR mutations were found in 19% (157 of 827; 95% CI, 16% to 22%) of tumors from men and 26% (346 of 1,315; 95% CI, 24% to 29%) of tumors from women (P < .001). EGFR mutations in men represented 31% (157 of 503; 95% CI, 27% to 35%) of all those detected.
Conclusion
A large number of EGFR mutations are found in adenocarcinoma tumor specimens from men and people who smoked cigarettes. If only women who were never smokers were tested, 57% of all EGFR mutations would be missed. Testing for EGFR mutations should be considered for all patients with adenocarcinoma of the lung at diagnosis, regardless of clinical characteristics. This strategy can extend the use of EGFR tyrosine kinase inhibitors to the greatest number individuals with the potential for substantial benefit.
doi:10.1200/JCO.2010.32.6181
PMCID: PMC3296671  PMID: 21482987
7.  Frequency of EGFR and KRAS Mutations in Lung Adenocarcinomas in African-Americans 
Journal of Thoracic Oncology  2011;6(1):28-31.
Structured Abstract
Introduction
The detection of mutations in the epidermal growth factor receptor (EGFR) gene, which predict sensitivity to treatment with EGFR tyrosine kinase inhibitors (TKIs), represents a major advance in the treatment of lung adenocarcinoma. KRAS mutations confer resistance to EGFR -TKIs. The prevalence of these mutations in African-American patients has not been thoroughly investigated.
Methods
We collected formalin-fixed, paraffin-embedded material from resected lung adenocarcinomas from African-American patients at three institutions for DNA extraction. The frequencies of EGFR exon 19 deletions, exon 21 L858R substitutions and KRAS mutations in tumor specimens from African-American patients were compared to data in Caucasian patients (n=476).
Results
EGFR mutations were detected in 23 of the 121 specimens from African-American patients (19%, 95% CI 13–27%), while KRAS mutations were found in 21 (17%, 95% CI 12−25%). There was no significant difference between frequencies of EGFR mutations comparing African-American and Caucasian patients, 19% vs. 13% (61/476, 95% CI 10–16%) (p=0.11). KRAS mutations were more likely among Caucasians, 26% (125/476, 95% CI 23−30%) (p=0.04).
Conclusions
This is the largest study to date examining the frequency of mutations in lung adenocarcinomas in African-Americans. Although KRAS mutations were somewhat less likely, there was no difference between the frequencies of EGFR mutations in African-American patients as compared to Caucasians. These results suggest that all patients with advanced lung adenocarcinomas should undergo mutational analysis prior to initiation of therapy.
doi:10.1097/JTO.0b013e3181fb4fe2
PMCID: PMC3337520  PMID: 21107288
EGFR mutation; KRAS; African-Americans; racial differences
8.  Detection of EGFR mutations in plasma DNA from lung cancer patients by mass spectrometry genotyping is predictive of tumor EGFR status and response to EGFR inhibitors 
Aims
EGFR mutations now guide the clinical use of EGFR-targeted therapy in lung cancer. However, standard EGFR mutation analysis requires a minimum amount of tumor tissue, which may not be available in certain situations. In this study, we combined a mass spectrometry genotyping assay (Sequenom) with a mutant-enriched PCR (ME-PCR) to detect EGFR mutations in free plasma DNA from patients with lung cancer.
Method
DNAs were extracted from 31 plasma samples from 31 patients and analyzed by both methods for EGFR exon 19 deletion and EGFR L858R mutation. Results in plasma DNA samples were compared with EGFR mutation status obtained in tumor DNA (18/31 EGFR mutant). The relationship of EGFR mutation status in tumor and/or plasma samples to overall survival was assessed.
Results
The EGFR mutation status in plasma DNA was identical to the primary tumor in 61% of patients (19/31). By mass spectrometry genotyping, the plasma samples contained mutant DNA corresponding to 5/14 EGFR exon 19 deletions and 3/4 EGFR L858R mutations previously diagnosed in the matched tumors. Two samples were positive in plasma DNA but negative in primary tumor tissue. Results were similar for ME-PCR. For patients treated with erlotinib, overall survival was correlated with the presence of EGFR mutation in plasma and/or tumor tissue (p=0.002), with the two patients positive only in plasma DNA showing responses and favorable outcomes.
Conclusion
The detection of EGFR mutations in plasma DNA samples by mass spectrometry genotyping and ME-PCR is feasible. A positive EGFR result in plasma DNA has a high predictive value for tumor EGFR status and for favorable clinical course on EGFR-targeted therapy and could therefore be useful in guiding clinical decisions in patients with insufficient or unavailable tumor specimens.
doi:10.1016/j.lungcan.2010.10.014
PMCID: PMC3282180  PMID: 21130517
Lung cancer; EGFR; Plasma; Mass spectrometry; Mutant-enriched PCR; Adenocarcinoma

Results 1-8 (8)