PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The O-glycomap of Lubricin, a Novel Mucin Responsible for Joint Lubrication, Identified by Site-specific Glycopeptide Analysis* 
Molecular & Cellular Proteomics : MCP  2014;13(12):3396-3409.
The lubricative, heavily glycosylated mucin-like synovial glycoprotein lubricin has previously been observed to contain glycosylation changes related to rheumatoid and osteoarthritis. Thus, a site-specific investigation of the glycosylation of lubricin was undertaken, in order to further understand the pathological mechanisms involved in these diseases. Lubricin contains an serine/threonine/proline (STP)-rich domain composed of imperfect tandem repeats (EPAPTTPK), the target for O-glycosylation. In this study, using a liquid chromatography–tandem mass spectrometry approach, employing both collision-induced and electron-transfer dissociation fragmentation methods, we identified 185 O-glycopeptides within the STP-rich domain of human synovial lubricin. This showed that adjacent threonine residues within the central STP-rich region could be simultaneously and/or individually glycosylated. In addition to core 1 structures responsible for biolubrication, core 2 O-glycopeptides were also identified, indicating that lubricin glycosylation may have other roles. Investigation of the expression of polypeptide N-acetylgalactosaminyltransferase genes was carried out using cultured primary fibroblast-like synoviocytes, a cell type that expresses lubricin in vivo. This analysis showed high mRNA expression levels of the less understood polypeptide N-acetylgalactosaminyltransferase 15 and 5 in addition to the ubiquitously expressed polypeptide N-acetylgalactosaminyltransferase 1 and 2 genes. This suggests that there is a unique combination of transferase genes important for the O-glycosylation of lubricin. The site-specific glycopeptide analysis covered 82% of the protein sequence and showed that lubricin glycosylation displays both micro- and macroheterogeneity. The density of glycosylation was shown to be high: 168 sites of O-glycosylation, predominately sialylated, were identified. These glycosylation sites were focused in the central STP-rich region, giving the domain a negative charge. The more positively charged lysine and arginine residues in the N and C termini suggest that synovial lubricin exists as an amphoteric molecule. The identification of these unique properties of lubricin may provide insight into the important low-friction lubricating functions of lubricin during natural joint movement.
doi:10.1074/mcp.M114.040865
PMCID: PMC4256492  PMID: 25187573
2.  Inconsistent Results of Diagnostic Tools Hamper the Differentiation between Bee and Vespid Venom Allergy 
PLoS ONE  2011;6(6):e20842.
Background
Double sensitization (DS) to bee and vespid venom is frequently observed in the diagnosis of hymenoptera venom allergy, but clinically relevant DS is rare. Therefore it is sophisticated to choose the relevant venom for specific immunotherapy and overtreatment with both venoms may occur. We aimed to compare currently available routine diagnostic tests as well as experimental tests to identify the most accurate diagnostic tool.
Methods
117 patients with a history of a bee or vespid allergy were included in the study. Initially, IgE determination by the ImmunoCAP, by the Immulite, and by the ADVIA Centaur, as well as the intradermal test (IDT) and the basophil activation test (BAT) were performed. In 72 CAP double positive patients, individual IgE patterns were determined by western blot inhibition and component resolved diagnosis (CRD) with rApi m 1, nVes v 1, and nVes v 5.
Results
Among 117 patients, DS was observed in 63.7% by the Immulite, in 61.5% by the CAP, in 47.9% by the IDT, in 20.5% by the ADVIA, and in 17.1% by the BAT. In CAP double positive patients, western blot inhibition revealed CCD-based DS in 50.8%, and the CRD showed 41.7% of patients with true DS. Generally, agreement between the tests was only fair and inconsistent results were common.
Conclusion
BAT, CRD, and ADVIA showed a low rate of DS. However, the rate of DS is higher than expected by personal history, indicating that the matter of clinical relevance is still not solved even by novel tests. Furthermore, the lack of agreement between these tests makes it difficult to distinguish between bee and vespid venom allergy. At present, no routinely employed test can be regarded as gold standard to find the clinically relevant sensitization.
doi:10.1371/journal.pone.0020842
PMCID: PMC3115969  PMID: 21698247
3.  The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis 
Introduction
Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS.
Methods
Podoplanin expression in human synovial tissue from 18 RA patients and nine osteoarthritis (OA) patients was assessed by immunohistochemistry and confirmed by Western blot analysis. The expression was related to markers of synoviocytes and myofibroblasts detected by using confocal immunofluoresence microscopy. Expression of podoplanin, with or without the addition of proinflammatory cytokines and growth factors, in primary human FLS was evaluated by using flow cytometry.
Results
Podoplanin was highly expressed in cadherin-11-positive cells throughout the synovial lining layer in RA. The expression was most pronounced in areas with lining layer hyperplasia and high matrix metalloproteinase 9 expression, where it coincided with upregulation of α-smooth muscle actin (α-sma). The synovium in OA was predominantly podoplanin-negative. Podoplanin was expressed in 50% of cultured primary FLSs, and the expression was increased by interleukin 1β, tumour necrosis factor α and transforming growth factor β receptor 1.
Conclusions
Here we show that podoplanin is highly expressed in FLSs of the invading synovial tissue in RA. The concomitant upregulation of α-sma and podoplanin in a subpopulation of FLSs indicates a myofibroblast phenotype. Proinflammatory mediators increased the podoplanin expression in cultured RA-FLS. We conclude that podoplanin might be involved in the synovial tissue transformation and increased migratory potential of activated FLSs in RA.
doi:10.1186/ar3274
PMCID: PMC3132020  PMID: 21385358
4.  Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon 
Analytical Chemistry  2010;82(23):9782-9788.
We examined the analysis of nucleotides and nucleotide sugars by chromatography on porous graphitic carbon with mass spectrometric detection, a method that evades contamination of the MS instrument with ion pairing reagent. At first, adenosine triphosphate (ATP) and other triphosphate nucleotides exhibited very poor chromatographic behavior on new columns and could hardly be eluted from columns previously cleaned with trifluoroacetic acid. Satisfactory performance of both new and older columns could, however, be achieved by treatment with reducing agent and, unexpectedly, hydrochloric acid. Over 40 nucleotides could be detected in cell extracts including many isobaric compounds such as ATP, deoxyguanosine diphosphate (dGTP), and phospho-adenosine-5′-phosphosulfate or 3′,5′-cyclic adenosine 5'-monophosphate (AMP) and its much more abundant isomer 2′,3′-cylic AMP. A fast sample preparation procedure based on solid-phase extraction on carbon allowed detection of very short-lived analytes such as cytidine 5'-monophosphate (CMP)-2-keto-deoxy-octulosonic acid. In animal cells and plant tissues, about 35 nucleotide sugars were detected, among them rarely considered metabolites such as uridine 5'-diphosphate (UDP)-l-arabinopyranose, UDP-l-arabinofuranose, guanosine 5'-diphosphate (GDP)-l-galactofuranose, UDP-l-rhamnose, and adenosine diphosphate (ADP)-sugars. Surprisingly, UDP-arabinopyranose was also found in Chinese hamster ovary (CHO) cells. Due to the unique structural selectivity of graphitic carbon, the method described herein distinguishes more nucleotides and nucleotide sugars than previously reported approaches.
doi:10.1021/ac101975k
PMCID: PMC2995335  PMID: 21043458

Results 1-4 (4)