Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells 
Marine Drugs  2015;13(3):1552-1568.
The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-d-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1). The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM). Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor cells.
PMCID: PMC4377999  PMID: 25803180
kalkitoxin; breast cancer; Moorea producens; mitochondria toxin; VEGF; angiogenesis inhibitor; hypoxia-inducible factor-1; HIF-1; Lyngbya majuscula
2.  Toxins in Botanical Dietary Supplements: Blue Cohosh Components Disrupt Cellular Respiration and Mitochondrial Membrane Potential 
Journal of natural products  2013;77(1):111-117.
Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA “Black Box” warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3) exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage.
PMCID: PMC3932489  PMID: 24328138
3.  Semisynthetic Studies Identify Mitochondria Poisons from Botanical Dietary Supplements – Geranyloxycoumarins from Aegle marmelos 
Bioorganic & medicinal chemistry  2013;21(7):1795-1803.
Bioassay-guided isolation and subsequent structure elucidation of a Bael tree Aegle marmelos lipid extract yielded two unstable acylated geranyloxycoumarin mixtures (1–2), six geranyloxycoumarins (3–8), (+)-9′-isovaleroxylariciresinol (9), and dehydromarmeline (10). In a T47D cell-based reporter assay, 1 and 2 potently inhibited hypoxia-induced HIF-1 activation (IC50 values 0.18 and 1.10 μg mL−1, respectively). Insufficient material and chemical instability prevented full delineation of the fatty acyl side chain olefin substitution patterns in 1 and 2. Therefore, five fatty acyl geranyloxycoumarin ester derivatives (11–15) were prepared from marmin (3) and commercial fatty acyl chlorides by semisynthesis. The unsaturated C-6′ linoleic acid ester derivative 14 that was structurally most similar to 1 and 2, inhibited HIF-1 activation with comparable potency (IC50 0.92 μM). The octanoyl (11) and undecanoyl (12) ester derivatives also suppressed HIF-1 activation (IC50 values 3.1 and 0.87 μM, respectively). Mechanistic studies revealed that these geranyloxycoumarin derivatives disrupt mitochondrial respiration, primarily at complex I. Thus, these compounds may inhibit HIF-1 activation by suppressing mitochondria-mediated hypoxic signaling. One surprising observation was that, while less potent, the purported cancer chemopreventive agent auraptene (8) was found to act as a mitochondrial poison that disrupts HIF-1 signaling in tumors.
PMCID: PMC3602229  PMID: 23434131
Botanical Dietary Supplements; Mitochondrial Poisons; Geranyloxycoumarin; Auraptene; Hypoxia-Inducible Factor-1 (HIF-1)
4.  Glycolysis Inhibitor Screening Identifies the Bis-geranylacylphloroglucinol Protonophore Moronone from Moronobea coccinea 
Journal of natural products  2012;75(12):2216-2222.
Tumor cells exhibit enhanced glucose consumption and lactate production even when supplied with adequate oxygen (a phenomenon known as the Warburg effect, or aerobic glycolysis). Pharmacological inhibition of aerobic glycolysis represents a potential tumor-selective approach that targets the metabolic differences between normal and malignant tissues. Human breast tumor MDA-MB-231 cells were used to develop an assay system to discover natural product-based glycolysis inhibitors. The assay employed was based on hypersensitivity to glycolytic inhibition in tumor cells treated with the mitochondrial electron transport inhibitor rotenone. Under such conditions, ATP supply, and hence cell viability, depends exclusively on glycolysis. This assay system was used to evaluate 10,648 plant and marine organism extracts from the U.S. National Cancer Institute's Open Repository. Bioassay-guided isolation of an active Moronobea coccinea extract yielded the new bis-geranylacylphloroglucinol derivative moronone (1). Compound 1 exhibited enhanced antiproliferative/cytotoxic activity in the presence of rotenone-imposed metabolic stress on tumor cells. Surprisingly, mechanistic studies revealed that 1 did not inhibit glycolysis, but rather functions as a protonophore that dissipates the mitochondrial proton gradient. In the presence of rotenone, tumor cells may be hypersensitive to protonophores due to increased ATP utilization by the ATP synthase.
PMCID: PMC3532528  PMID: 23245650
5.  Structures and Mechanisms of Antitumor Agents - Xestoquinones Uncouple Cellular Respiration and Disrupt HIF Signaling in Human Breast Tumor Cells 
Journal of natural products  2012;75(9):1553-1559.
The organic extract of a marine sponge Petrosia alfiani selectively inhibited iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in a human breast tumor T47D cell-based reporter assay. Bioassay-guided fractionation yielded seven xestoquinones (1 – 7) including three new compounds 14-hydroxymethylxestoquinone (1), 15-hydroxymethylxestoquinone (2), and 14,15-dihydroxestoquinone (3). Compounds 1 – 7 were evaluated for their effects on HIF-1 signaling, mitochondrial respiration, and tumor cell proliferation/viability. The known metabolites adociaquinones A (5) and B (6), that possess a 3,4-dihydro-2H-1,4-thiazine-1,1-dioxide moiety, potently and selectively inhibited iron chelator-induced HIF-1 activation in T47D cells, each with an IC50 value of 0.2 μM. Mechanistic studies revealed that adociaquinones promote oxygen consumption without affecting mitochondrial membrane potential. Compound 1 both enhances respiration and decreases mitochondrial membrane potential, suggesting that it acts as a protonophore that uncouples mitochondrial respiration.
PMCID: PMC3482980  PMID: 22938093
6.  Identification of Bax-VDAC1 complexes in digitonin-solubilized cerebellar granule neurons 
Journal of neurochemistry  2011;119(5):1137-1150.
Mitochondrial outer membrane Bax oligomers are critical for cytochrome c release, but the role of resident mitochondrial proteins in this process remain unclear. Membrane-associated Bax has primarily been studied using CHAPS as the solubilizing agent, as it does not induce conformational artifacts, although recent evidence indicates it may have artifactual effects. The objective of this study was to investigate digitonin as an alternative detergent to assess Bax oligomeric state, and possible interaction with VDAC1 in cerebellar granule neurons. VDAC1 co-immunoprecipitated with Bax in digitonin extracts from healthy and apoptotic neurons. Two-dimensional blue native-SDS PAGE revealed five Bax and VDAC1 oligomers having similar masses from 120–500 kDa. The levels of two VDAC1 oligomers in Bax 1D1 immunodepleted extracts negatively correlated with levels of co-precipitated VDAC1, indicating the co-precipitated VDAC1 was derived from these oligomers. Immunodepletion with the 6A7 antibody modestly reduced the levels of Bax oligomers from apoptotic but not healthy neurons. A sixth 170 kDa oligomer containing exclusively 6A7 Bax and no VDAC1 was identified after apoptosis induction. CHAPS failed to solubilize VDAC1, and additionally yielded no distinct oligomers. We conclude that digitonin is a potentially useful detergent preserving Bax-VDAC1 interactions that may be disrupted with CHAPS.
PMCID: PMC3217164  PMID: 21951169
apoptosis; Bax; VDAC; digitonin; mitochondria; CHAPS
7.  Natural and Semisynthetic Mammea-Type Isoprenlated Dihydroxycoumarins Uncouple Cellular Respiration 
Journal of natural products  2011;74(2):240-248.
In an effort to identify natural product-based molecular-targeted antitumor agents, mammea-type coumarins from the tropical/subtropical plant Mammea americana were found to inhibit the activation of HIF-1 (hypoxia-inducible factor-1) in human breast and prostate tumor cells. In addition to the recently reported mammea E/BB (15), bioassay-guided fractionation of the active extract yielded fourteen mammea-type coumarins including three new compounds mammea F/BB 1 (1), mammea F/BA (2), and C/AA (3). The absolute configuration of C-1′ in 1 was determined by the modified Mosher’s method on a methylated derivative. These coumarins were evaluated for their effects on mitochondrial respiration, HIF-1 signaling, and tumor cell proliferation/viability. Acetylation of 1 afforded a triacetoxylated product (A-2) that inhibited HIF-1 activation with increased potency in both T47D (IC50 0.83 μM for hypoxia-induced) and PC3 cells (IC50 0.94 μM for hypoxia-induced). Coumarins possessing a 6-prenyl-8-(3-methyl-oxobutyl)-substituent pattern exhibited enhanced HIF-1 inhibitory effects. The O-methylated derivatives were less active at inhibiting HIF-1 and suppressing cell proliferation/viability. Mechanistic studies indicate that these compounds act as anionic protonophores that potently uncouple mitochondrial electron transport and disrupt hypoxic signaling.
PMCID: PMC3045645  PMID: 21214226
8.  Mammea E/BB, An Isoprenylated Dihydroxycoumarin Protonophore that Potently Uncouples Mitochondrial Electron Transport Disrupts Hypoxic Signaling in Tumor Cells 
Journal of Natural Products  2010;73(11):1868-1872.
The mammea-type coumarin mammea E/BB (1) was found to inhibit both hypoxia-induced and iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in human breast tumor T47D cells with IC50 values of 0.96 and 0.89 µM, respectively. Compound 1 suppressed the hypoxic induction of secreted VEGF protein (T47D cells) and inhibited cell viability/proliferation in four human tumor cell lines. Compound 1 (at 5 and 20 µM) inhibited human breast tumor MDA-MB-231 cell migration. While the mechanisms that underlay their biological activities have remained unknown, prenylated mammea coumarins have been shown to be cytotoxic to human tumor cells, suppress tumor growth in animal models, and display a wide variety of antimicrobial effects. Mechanistic studies revealed that 1 appears to exert an assemblage of cellular effects by functioning as an anionic protonophore that potently uncouples mitochondrial electron transport and disrupts mitochondrial signaling in human tumor cell lines.
PMCID: PMC2993771  PMID: 20929261
9.  The Marine Sponge Metabolite Mycothiazole: A Novel Prototype Mitochondrial Complex I Inhibitor 
Bioorganic & medicinal chemistry  2010;18(16):5988-5994.
A natural product chemistry-based approach was applied to discover small-molecule inhibitors of hypoxia-inducible factor-1 (HIF-1). A Petrosaspongia mycofijiensis marine sponge extract yielded mycothiazole (1), a solid tumor selective compound with no known mechanism for its cell line-dependent cytotoxic activity. Compound 1 inhibited hypoxic HIF-1 signaling in tumor cells (IC50 1 nM) that correlated with the suppression of hypoxia-stimulated tumor angiogenesis in vitro. However, 1 exhibited pronounced neurotoxicity in vitro. Mechanistic studies revealed that 1 selectively suppresses mitochondrial respiration at Complex I (NADH-ubiquinone oxidoreductase). Unlike rotenone, MPP+, annonaceous acetogenins, piericidin A, and other Complex I inhibitors, mycothiazole is a mixed polyketide/peptide-derived compound with a central thiazole moiety. The exquisite potency and structural novelty of 1 suggest that it may serve as a valuable molecular probe for mitochondrial biology and HIF-mediated hypoxic signaling.
PMCID: PMC2918693  PMID: 20637638
Hypoxia-inducible factor-1 (HIF-1); Marine natural products; Mitochondrial Complex I Inhibitor; NADH-ubiquinone oxidoreductase
10.  The Alternative Medicine Pawpaw and Its Acetogenin Constituents Suppress Tumor Angiogenesis via the HIF-1/VEGF Pathway 
Journal of natural products  2010;73(5):956-961.
Products that contain twig extracts of pawpaw (Asimina triloba, Annonaceae) are widely consumed anticancer alternative medicines. Pawpaw crude extract (CE) and purified acetogenins inhibited hypoxia-inducible factor-1 (HIF-1)-mediated hypoxic signaling pathways in tumor cells. In T47D cells, pawpaw CE and the acetogenins 10-hydroxyglaucanetin (1), annonacin (2), and annonacin A (3) inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.02 μg/mL, 12 nM, 13 nM, and 31 nM, respectively. This inhibition correlates with the suppression of the hypoxic induction of HIF-1 target genes VEGF and GLUT-1. The induction of secreted VEGF protein represents a key event in hypoxia-induced tumor angiogenesis. Both the extract and the purified acetogenins blocked the angiogenesis-stimulating activity of hypoxic T47D cells in vitro. Pawpaw extract and acetogenins inhibited HIF-1 activation by blocking the hypoxic induction of nuclear HIF-1α protein. The inhibition of HIF-1 activation was associated with the suppression of mitochondrial respiration at complex I. Thus, the inhibition of HIF-1 activation and hypoxic tumor angiogenesis constitutes a novel mechanism of action for these anticancer alternative medicines.
PMCID: PMC2890309  PMID: 20423107
11.  The Caulerpa Pigment Caulerpin Inhibits HIF-1 Activation and Mitochondrial Respiration 
Journal of natural products  2009;72(12):2104-2109.
The transcription factor hypoxia-inducible factor-1 (HIF-1) represents an important molecular target for anticancer drug discovery. In a T47D cell-based reporter assay, the Caulerpa spp. algal pigment caulerpin (1) inhibited hypoxia-induced as well as 1,10-phenanthroline-induced HIF-1 activation. The angiogenic factor vascular endothelial growth factor (VEGF) is regulated by HIF-1. Caulerpin (10 μM) suppressed hypoxic induction of secreted VEGF protein and the ability of hypoxic T47D cell-conditioned media to promote tumor angiogenesis in vitro. Under hypoxic conditions, 1 (10 μM) blocked the induction of HIF-1α protein, the oxygen-regulated subunit that controls HIF-1 activity. Reactive oxygen species produced by mitochondrial complex III are believed to act as a signal of cellular hypoxia that leads to HIF-1α protein induction and activation. Further mechanistic studies revealed that 1 inhibits mitochondrial respiration at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Under hypoxic conditions, it is proposed that 1 may disrupt mitochondrial ROS-regulated HIF-1 activation and HIF-1 downstream target gene expression by inhibiting the transport or delivery of electrons to complex III.
PMCID: PMC2798910  PMID: 19921787
12.  Lipophilic 2,5-Disubstituted Pyrroles from the Marine Sponge Mycale sp. Inhibit Mitochondrial Respiration and HIF-1 Activation 
Journal of natural products  2009;72(11):1927-1936.
The lipid extract of the marine sponge Mycale sp. inhibited the activation of hypoxiainducible factor-1 (HIF-1) in a human breast tumor T47D cell-based reporter assay. Bioassay-guided isolation and structure elucidation yielded 18 new lipophilic 2,5-disubstituted pyrroles, and eight structurally related known compounds. The active compounds inhibited hypoxia-induced HIF activation with moderate potency (IC50 values < 10 μM). Mechanistic studies revealed that the active compounds suppressed mitochondrial respiration by blocking NADH-ubiquinone oxidoreductase (complex I) at concentrations that inhibited HIF-1 activation. Under hypoxic conditions, reactive oxygen species produced by mitochondrial complex III are believed to act as a signal of cellular hypoxia that leads to HIF-1α protein induction and activation. By inhibiting electron transport (or delivery) to complex III under hypoxic conditions, lipophilic Mycale pyrroles appear to disrupt mitochondrial ROS-regulated HIF-1 signaling.
PMCID: PMC2868385  PMID: 19845338
13.  Molecular-Targeted Antitumor Agents 19 
Journal of natural products  2008;71(11):1854-1860.
A natural product chemistry-based approach was employed to discover small molecule inhibitors of the important tumor-selective molecular target hypoxia-inducible factor-1 (HIF-1). Bioassay-guided isolation of an active lipid extract of a Saipan collection of the marine sponge Lendenfeldia sp. afforded the terpene-derived furanolipid furospongolide as the primary inhibitor of hypoxia-induced HIF-1 activation (IC50 2.9 μM, T47D breast tumor cells). The active component of the extract also contained one new cytotoxic scalarane sesterterpene and two previously reported scalaranes. Furospongolide blocked the induction of the downstream HIF-1 target secreted vascular endothelial growth factor (VEGF) and was shown to suppress HIF-1 activation by inhibiting the hypoxic induction of HIF-1α protein. Mechanistic studies indicate that furospongolide inhibits HIF-1 activity primarily by suppressing tumor cell respiration via the blockade of NADH-ubiquinone oxidoreductase (complex I)-mediated mitochondrial electron transfer.
PMCID: PMC2893247  PMID: 18989978
14.  A Systems Biology Approach to Investigating Apoptotic Stimuli as Effectors of Cell Metabolism: Practical Application of Top-Down Control Analysis to Attached Neurons 
Reduced glycolytic and mitochondrial respiration rates are common features of apoptosis that may reflect key events contributing to cell death. However, it is unclear to what extent the rate changes can be explained by direct alterations in the kinetics of the participating reactions, as changes in the concentrations of intermediates also affect reaction rates. Direct kinetic changes can be identified, ranked, and compared to the indirect effects mediated by the intermediates using top-down control analysis. Flux changes that are explained primarily by direct effects are likely to be prime targets of the pathways that signal death, and thus important contributors to apoptosis. Control analysis concepts relevant to identifying such effects are reviewed. Metabolic flux measurements are essential for this approach, but can be technically difficult, particularly when using adherent cells such as neurons. A simple method is described that renders such measurements feasible.
PMCID: PMC2660658  PMID: 19333429
Apoptosis; glycolysis; mitochondria

Results 1-14 (14)