Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
author:("Janssen, ring")
1.  Effects of Prophylactic and Therapeutic Paracetamol Treatment during Vaccination on Hepatitis B Antibody Levels in Adults: Two Open-Label, Randomized Controlled Trials 
PLoS ONE  2014;9(6):e98175.
Worldwide, paracetamol is administered as a remedy for complaints that occur after vaccination. Recently published results indicate that paracetamol inhibits the vaccination response in infants when given prior to vaccination. The goal of this study was to establish whether paracetamol exerts similar effects in young adults. In addition, the effect of timing of paracetamol intake was investigated. In two randomized, controlled, open-label studies 496 healthy young adults were randomly assigned to three groups. The study groups received paracetamol for 24 hours starting at the time of (prophylactic use) - or 6 hours after (therapeutic use) the primary (0 month) and first booster (1 month) hepatitis B vaccination. The control group received no paracetamol. None of the participants used paracetamol around the second booster (6 months) vaccination. Anti-HBs levels were measured prior to and one month after the second booster vaccination on ADVIA Centaur XP. One month after the second booster vaccination, the anti-HBs level in the prophylactic paracetamol group was significantly lower (p = 0.048) than the level in the control group (4257 mIU/mL vs. 5768 mIU/mL). The anti-HBs level in the therapeutic paracetamol group (4958 mIU/mL) was not different (p = 0.34) from the level in the control group. Only prophylactic paracetamol treatment, and not therapeutic treatment, during vaccination has a negative influence on the antibody concentration after hepatitis B vaccination in adults. These findings prompt to consider therapeutic instead of prophylactic treatment to ensure maximal vaccination efficacy and retain the possibility to treat pain and fever after vaccination.
Trial Registration ISRCTN03576945
PMCID: PMC4045752  PMID: 24897504
2.  IL1RL1 Gene Variants and Nasopharyngeal IL1RL-a Levels Are Associated with Severe RSV Bronchiolitis: A Multicenter Cohort Study 
PLoS ONE  2012;7(5):e34364.
Targets for intervention are required for respiratory syncytial virus (RSV) bronchiolitis, a common disease during infancy for which no effective treatment exists. Clinical and genetic studies indicate that IL1RL1 plays an important role in the development and exacerbations of asthma. Human IL1RL1 encodes three isoforms, including soluble IL1RL1-a, that can influence IL33 signalling by modifying inflammatory responses to epithelial damage. We hypothesized that IL1RL1 gene variants and soluble IL1RL1-a are associated with severe RSV bronchiolitis.
Methodology/Principal Findings
We studied the association between RSV and 3 selected IL1RL1 single-nucleotide polymorphisms rs1921622, rs11685480 or rs1420101 in 81 ventilated and 384 non-ventilated children under 1 year of age hospitalized with primary RSV bronchiolitis in comparison to 930 healthy controls. Severe RSV infection was defined by need for mechanical ventilation. Furthermore, we examined soluble IL1RL1-a concentration in nasopharyngeal aspirates from children hospitalized with primary RSV bronchiolitis. An association between SNP rs1921622 and disease severity was found at the allele and genotype level (p = 0.011 and p = 0.040, respectively). In hospitalized non-ventilated patients, RSV bronchiolitis was not associated with IL1RL1 genotypes. Median concentrations of soluble IL1RL1-a in nasopharyngeal aspirates were >20-fold higher in ventilated infants when compared to non-ventilated infants with RSV (median [and quartiles] 9,357 [936–15,528] pg/ml vs. 405 [112–1,193] pg/ml respectively; p<0.001).
We found a genetic link between rs1921622 IL1RL1 polymorphism and disease severity in RSV bronchiolitis. The potential biological role of IL1RL1 in the pathogenesis of severe RSV bronchiolitis was further supported by high local concentrations of IL1RL1 in children with most severe disease. We speculate that IL1RL1a modifies epithelial damage mediated inflammatory responses during RSV bronchiolitis and thus may serve as a novel target for intervention to control disease severity.
PMCID: PMC3344820  PMID: 22574108
3.  Local interleukin-10 production during respiratory syncytial virus bronchiolitis is associated with post-bronchiolitis wheeze 
Respiratory Research  2011;12(1):121.
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants. Following RSV bronchiolitis, 50% of children develop post-bronchiolitis wheeze (PBW). Animal studies have suggested that interleukin (IL)-10 plays a critical role in the pathogenesis of RSV bronchiolitis and subsequent airway hyperresponsiveness. Previously, we showed that ex vivo monocyte IL-10 production is a predictor of PBW. Additionally, heterozygosity of the single-nucleotide polymorphism (SNP) rs1800872 in the IL10 promoter region was associated with protection against RSV bronchiolitis.
This study aimed to determine the in vivo role of IL-10 in RSV pathogenesis and recurrent wheeze in a new cohort of 235 infants hospitalized for RSV bronchiolitis. IL-10 levels in nasopharyngeal aspirates (NPAs) were measured at the time of hospitalization and the IL10 SNP rs1800872 genotype was determined. Follow-up data were available for 185 children (79%).
Local IL-10 levels during RSV infection turned out to be higher in infants that later developed physician diagnosed PBW as compared to infants without PBW in the first year after RSV infection (958 vs 692 pg/ml, p = 0.02). The IL10 promoter SNP rs1800872 was not associated with IL-10 concentration in NPAs.
The relationship between high local IL-10 levels during the initial RSV infection and physician diagnosed PBW provides further evidence of the importance of the IL-10 response during RSV bronchiolitis.
PMCID: PMC3179726  PMID: 21910858
interleukin-10; lower respiratory tract infection; respiratory syncytial virus; wheeze
4.  Systemic Signature of the Lung Response to Respiratory Syncytial Virus Infection 
PLoS ONE  2011;6(6):e21461.
Respiratory Syncytial Virus is a frequent cause of severe bronchiolitis in children. To improve our understanding of systemic host responses to RSV, we compared BALB/c mouse gene expression responses at day 1, 2, and 5 during primary RSV infection in lung, bronchial lymph nodes, and blood. We identified a set of 53 interferon-associated and innate immunity genes that give correlated responses in all three murine tissues. Additionally, we identified blood gene signatures that are indicative of acute infection, secondary immune response, and vaccine-enhanced disease, respectively. Eosinophil-associated ribonucleases were characteristic for the vaccine-enhanced disease blood signature. These results indicate that it may be possible to distinguish protective and unfavorable patient lung responses via blood diagnostics.
PMCID: PMC3123345  PMID: 21731757
5.  Gene Expression Differences in Lungs of Mice during Secondary Immune Responses to Respiratory Syncytial Virus Infection▿ †  
Journal of Virology  2010;84(18):9584-9594.
Vaccine-induced immunity has been shown to alter the course of a respiratory syncytial virus (RSV) infection both in murine models and in humans. To elucidate which mechanisms underlie the effect of vaccine-induced immunity on the course of RSV infection, transcription profiles in the lungs of RSV-infected mice were examined by microarray analysis. Three models were used: RSV reinfection as a model for natural immunity, RSV challenge after formalin-inactivated RSV vaccination as a model for vaccine-enhanced disease, and RSV challenge following vaccination with recombinant RSV virus lacking the G gene (ΔG-RSV) as a model for vaccine-induced immunity. Gene transcription profiles, histopathology, and viral loads were analyzed at 1, 2, and 5 days after RSV challenge. On the first 2 days after challenge, all mice displayed an expression pattern in the lung similar of that found in primary infection, showing a strong innate immune response. On day 5 after RSV reinfection or after challenge following ΔG-RSV vaccination, the innate immune response was waning. In contrast, in mice with vaccine-enhanced disease, the innate immune response 5 days after RSV challenge was still present even though viral replication was diminished. In addition, only in this group was Th2 gene expression induced. These findings support a hypothesis that vaccine-enhanced disease is mediated by prolonged innate immune responses and Th2 polarization in the absence of viral replication.
PMCID: PMC2937637  PMID: 20592085
6.  Host-Pathogen Interactions in Campylobacter Infections: the Host Perspective 
Clinical Microbiology Reviews  2008;21(3):505-518.
Campylobacter is a major cause of acute bacterial diarrhea in humans worldwide. This study was aimed at summarizing the current understanding of host mechanisms involved in the defense against Campylobacter by evaluating data available from three sources: (i) epidemiological observations, (ii) observations of patients, and (iii) experimental observations including observations of animal models and human volunteer studies. Analysis of available data clearly indicates that an effective immune system is crucial for the host defense against Campylobacter infection. Innate, cell-mediated, and humoral immune responses are induced during Campylobacter infection, but the relative importance of these mechanisms in conferring protective immunity against reinfection is unclear. Frequent exposure to Campylobacter does lead to the induction of short-term protection against disease but most probably not against colonization. Recent progress in the development of more suitable animal models for studying Campylobacter infection has opened up possibilities to study the importance of innate and adaptive immunity during infection and in protection against reinfection. In addition, advances in genomics and proteomics technologies will enable more detailed molecular studies. Such studies combined with better integration of host and pathogen research driven by epidemiological findings may truly advance our understanding of Campylobacter infection in humans.
PMCID: PMC2493085  PMID: 18625685
7.  Identification of a Common Gene Expression Response in Different Lung Inflammatory Diseases in Rodents and Macaques 
PLoS ONE  2008;3(7):e2596.
To identify gene expression responses common to multiple pulmonary diseases we collected microarray data for acute lung inflammation models from 12 studies and used these in a meta-analysis. The data used include exposures to air pollutants; bacterial, viral, and parasitic infections; and allergic asthma models. Hierarchical clustering revealed a cluster of 383 up-regulated genes with a common response. This cluster contained five subsets, each characterized by more specific functions such as inflammatory response, interferon-induced genes, immune signaling, or cell proliferation. Of these subsets, the inflammatory response was common to all models, interferon-induced responses were more pronounced in bacterial and viral models, and a cell division response was more prominent in parasitic and allergic models. A common cluster containing 157 moderately down-regulated genes was associated with the effects of tissue damage. Responses to influenza in macaques were weaker than in mice, reflecting differences in the degree of lung inflammation and/or virus replication. The existence of a common cluster shows that in vivo lung inflammation in response to various pathogens or exposures proceeds through shared molecular mechanisms.
PMCID: PMC2442866  PMID: 18612392
8.  Host Transcription Profiles upon Primary Respiratory Syncytial Virus Infection▿ †  
Journal of Virology  2007;81(11):5958-5967.
Respiratory syncytial virus (RSV) is a common cause of severe lower respiratory tract infection in children. Severe RSV disease is related to an inappropriate immune response to RSV resulting in enhanced lung pathology which is influenced by host genetic factors. To gain insight into the early pathways of the pathogenesis of and immune response to RSV infection, we determined the transcription profiles of lungs and lymph nodes on days 1 and 3 after infection of mice. Primary RSV infection resulted in a rapid but transient innate, proinflammatory response, as exemplified by the induction of a large number of type I interferon-regulated genes and chemokine genes, genes involved in inflammation, and genes involved in antigen processing. Interestingly, this response is much stronger on day 1 than on day 3 after infection, indicating that the strong transcriptional response in the lung precedes the peak of viral replication. Surprisingly, the set of down-regulated genes was small and none of these genes displayed strong down-regulation. Responses in the lung-draining lymph nodes were much less prominent than lung responses and are suggestive of NK cell activation. Our data indicate that at time points prior to the peak of viral replication and influx of inflammatory cells, the local lung response, measured at the transcriptional level, has already dampened down. The processes and pathways induced shortly after RSV infection can now be used for the selection of candidate genes for human genetic studies of children with severe RSV infection.
PMCID: PMC1900269  PMID: 17376894
9.  Gamma Irradiation or CD4+-T-Cell Depletion Causes Reactivation of Latent Salmonella enterica Serovar Typhimurium Infection in C3H/HeN Mice  
Infection and Immunity  2005;73(5):2857-2862.
Upon infection with Salmonella, a host develops an immune response to limit bacterial growth and kill and eliminate the pathogen. Salmonella has evolved mechanisms to remain dormant within the body, only to reappear (reactivate) at a later time when the immune system is abated. We have developed an in vivo model for studying reactivation of Salmonella enterica serovar Typhimurium infection in mice. Upon subcutaneous infection, C3H/HeN (Ityr) mice showed an increase in bacterial numbers in livers and spleens, which reached a peak on day 19. After full recovery from the infection, these mice were irradiated or depleted of CD4+ T cells. The mice displayed a secondary infection peak in livers and spleens with a course similar to that of the primary infection. We concluded that CD4+ T cells are involved in active suppression of S. enterica serovar Typhimurium during latency. The role of CD4+ T cells during primary infection with S. enterica serovar Typhimurium is well established. This is the first study to describe a role of CD4+ T cells during the latent phase of S. enterica serovar Typhimurium infection.
PMCID: PMC1087344  PMID: 15845491
10.  The Same IκBα Mutation in Two Related Individuals Leads to Completely Different Clinical Syndromes 
Both innate and adaptive immune responses are dependent on activation of nuclear factor κB (NF-κB), induced upon binding of pathogen-associated molecular patterns to Toll-like receptors (TLRs). In murine models, defects in NF-κB pathway are often lethal and viable knockout mice have severe immune defects. Similarly, defects in the human NF-κB pathway described to date lead to severe clinical disease. Here, we describe a patient with a hyper immunoglobulin M–like immunodeficiency syndrome and ectodermal dysplasia. Monocytes did not produce interleukin 12p40 upon stimulation with various TLR stimuli and nuclear translocation of NF-κB was impaired. T cell receptor–mediated proliferation was also impaired. A heterozygous mutation was found at serine 32 in IκBα. Interestingly, his father has the same mutation but displays complex mosaicism. He does not display features of ectodermal dysplasia and did not suffer from serious infections with the exception of a relapsing Salmonella typhimurium infection. His monocyte function was impaired, whereas T cell function was relatively normal. Consistent with this, his T cells almost exclusively displayed the wild-type allele, whereas both alleles were present in his monocytes. We propose that the T and B cell compartment of the mosaic father arose as a result of selection of wild-type cells and that this underlies the widely different clinical phenotype.
PMCID: PMC2212739  PMID: 15337789
immunodeficiency; IκBα; monocyte function; T cell activation; infection
11.  Salmonella Gene rma (ramA) and Multiple-Drug-Resistant Salmonella enterica Serovar Typhimurium 
MarA and its homologue, RamA, have been implicated in multidrug resistance (MDR). RamA overexpression in Salmonella enterica serovar Typhimurium and Escherichia coli conferred MDR independently of marA. Inactivation of ramA did not affect the antibiotic susceptibilities of wild-type S. enterica serovar Typhimurium or 15 unrelated clinical MDR isolates. Thus, ramA overexpression is not a common MDR mechanism in Salmonella.
PMCID: PMC415616  PMID: 15155237
12.  Salmonella enterica Serovar Typhimurium RamA, Intracellular Oxidative Stress Response, and Bacterial Virulence  
Infection and Immunity  2004;72(2):996-1003.
Escherichia coli and Salmonella enterica serovar Typhimurium have evolved genetic systems, such as the soxR/S and marA regulons, to detoxify reactive oxygen species, like superoxide, which are formed as by-products of metabolism. Superoxide also serves as a microbicidal effector mechanism of the host's phagocytes. Here, we investigate whether regulatory genes other than soxR/S and marA are active in response to oxidative stress in Salmonella and may function as virulence determinants. We identified a bacterial gene, which was designated ramA (342 bp) and mapped at 13.1 min on the Salmonella chromosome, that, when overexpressed on a plasmid in E. coli or Salmonella, confers a pleiotropic phenotype characterized by increased resistance to the redox-cycling agent menadione and to multiple unrelated antibiotics. The ramA gene is present in Salmonella serovars but is absent in E. coli. The gene product displays 37 to 52% homology to the transcriptional activators soxR/S and marA and 80 to 100% identity to a multidrug resistance gene in Klebsiella pneumoniae and Salmonella enterica serovar Paratyphi A. Although a ramA soxR/S double null mutant is highly susceptible to intracellular superoxide generated by menadione and displays decreased Mn-superoxide dismutase activity, intracellular survival of this mutant within macrophage-like RAW 264.7 cells and in vivo replication in the spleens in Ityr mice are not affected. We concluded that despite its role in the protective response of the bacteria to oxidative stress in vitro, the newly identified ramA gene, together with soxR/S, does not play a role in initial replication of Salmonella in the organs of mice.
PMCID: PMC321585  PMID: 14742546
13.  A Superoxide-Hypersusceptible Salmonella enterica Serovar Typhimurium Mutant Is Attenuated but Regains Virulence in p47phox−/− Mice  
Infection and Immunity  2002;70(5):2614-2621.
Salmonella enterica serovar Typhimurium is a gram-negative, facultative intracellular pathogen that predominantly invades mononuclear phagocytes and is able to establish persistent infections. One of the innate defense mechanisms of phagocytic cells is the production of reactive oxygen species, including superoxide. S. enterica serovar Typhimurium has evolved mechanisms to resist such radicals, and these mechanisms could be decisive in its ability to survive and replicate within macrophages. Recently, we described a superoxide-hypersusceptible S. enterica serovar Typhimurium mutant strain, DLG294, that carries a transposon in sspJ, resulting in the lack of expression of SspJ, which is necessary for resistance against superoxide and replication within macrophages. Here we show that DLG294, which is a 14028s derivative, hardly induced any granulomatous lesions in the livers upon subcutaneous infection of C3H/HeN (Ityr) mice with 3 × 104 bacteria and that its bacterial counts were reduced by 3 log units compared to those of wild-type S. enterica serovar Typhimurium 14028s on day 5 after infection. In contrast, DLG294 replicated like wild-type S. enterica serovar Typhimurium 14028s and induced a phenotypically similar liver pathology in p47phox−/− mice, which are deficient in the p47phox subunit of the NADPH oxidase complex and which do not produce superoxide. Consistent with these results, DLG294 reached bacterial counts identical to those of wild-type S. enterica serovar Typhimurium 14028s in bone marrow-derived macrophages from p47phox−/− mice and in X-CGD PLB-985 cells at 24 h after challenge. These results indicate that SspJ plays a role in the bacterium's resistance to oxidative stress and in the survival and replication of S. enterica serovar Typhimurium both in vitro and in vivo.
PMCID: PMC127934  PMID: 11953403
14.  Novel Salmonella enterica Serovar Typhimurium Protein That Is Indispensable for Virulence and Intracellular Replication 
Infection and Immunity  2001;69(12):7413-7418.
Upon contact with host cells, the intracellular pathogen Salmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribed Salmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonella chromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 104 to 107 bacteria in C3H/HeN and 101 to 104 bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity.
PMCID: PMC98829  PMID: 11705915
15.  An Epitope Delivery System for Use with Recombinant Mycobacteria 
Infection and Immunity  1998;66(8):3643-3648.
We have developed a novel epitope delivery system based on the insertion of peptides within a permissive loop of a bacterial superoxide dismutase molecule. This system allowed high-level expression of heterologous peptides in two mycobacterial vaccine strains, Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mycobacterium vaccae. The broader application of the system was analyzed by preparation of constructs containing peptide epitopes from a range of infectious agents and allergens. We report detailed characterization of the immunogenicity of one such construct, in which an epitope from the Der p1 house dust mite allergen was expressed in M. vaccae. The construct was able to stimulate T-cell hybridomas specific for Der p1, and it induced peptide-specific gamma interferon responses when used to immunize naive mice. This novel expression system demonstrates new possibilities for the use of mycobacteria as vaccine delivery vehicles.
PMCID: PMC108397  PMID: 9673244

Results 1-15 (15)