PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Acute Kidney Injury due to Crescentic Glomerulonephritis in a Patient with Polycystic Kidney Disease 
Polycystic kidney disease is an inherited condition, characterized by the development of cysts in the kidney, as well as in other organs. Patients with polycystic kidney can suffer from the same causes of acute kidney injury as the general population. Nephritic syndrome is an uncommon cause of acute kidney injury in the general population and less common in patients with polycystic kidney disease. We report the second case of crescentic glomerulonephritis, causing acute kidney injury, in a patient with polycystic kidney disease.
doi:10.1159/000353850
PMCID: PMC3731623  PMID: 23914203
Crescentic glomerulonephritis; Polycystic kidney disease; Acute kidney injury
2.  Connective Tissue Growth Factor (CTGF) Expression Modulates Response to High Glucose 
PLoS ONE  2013;8(8):e70441.
Connective tissue growth factor (CTGF) is an important mediator of fibrosis; emerging evidence link changes in plasma and urinary CTGF levels to diabetic kidney disease. To further ascertain the role of CTGF in responses to high glucose, we assessed the consequence of 4 months of streptozotocin-induced diabetes in wild type (+/+) and CTGF heterozygous (+/−) mice. Subsequently, we studied the influence of glucose on gene expression and protein in mice embryonic fibroblasts (MEF) cells derived from wildtype and heterozygous mice. At study initiation, plasma glucose, creatinine, triglyceride and cholesterol levels were similar between non-diabetic CTGF+/+ and CTGF+/− mice. In the diabetic state, plasma glucose levels were increased in CTGF+/+ and CTGF+/− mice (28.2 3.3 mmol/L vs 27.0 3.1 mmol/L), plasma triglyceride levels were lower in CTGF+/− mice than in CTGF+/+ (0.7 0.2 mmol/L vs 0.5 0.1 mmol/L, p<0.05), but cholesterol was essentially unchanged in both groups. Plasma creatinine was higher in diabetic CTGF+/+ group (11.7±1.2 vs 7.9±0.6 µmol/L p<0.01), while urinary albumin excretion and mesangial expansion were reduced in diabetic CTGF+/− animals. Cortices from diabetic mice (both CTGF +/+ and CTGF +/−) manifested higher expression of CTGF and thrombospondin 1 (TSP1). Expression of nephrin was reduced in CTGF +/+ animals; this reduction was attenuated in CTGF+/− group. In cultured MEF from CTGF+/+ mice, glucose (25 mM) increased expression of pro-collagens 1, IV and XVIII as well as fibronectin and thrombospondin 1 (TSP1). In contrast, activation of these genes by high glucose was attenuated in CTGF+/− MEF. We conclude that induction of Ctgf mediates expression of extracellular matrix proteins in diabetic kidney. Thus, genetic variability in CTGF expression directly modulates the severity of diabetic nephropathy.
doi:10.1371/journal.pone.0070441
PMCID: PMC3741286  PMID: 23950936
3.  α-Lipoic Acid Protects Diabetic Apolipoprotien E-deficient Mice from Nephropathy 
Aim
Both hyperglycemia and hyperlipidemia increase oxidative stress, and contribute to the development of diabetic nephropathy (DN). We investigated effects of α-lipoic acid, a natural antioxidant and a cofactor in the multienzyme complexes, on the development of DN in diabetic apolipoprotein E-deficient mice.
Methods
Twelve-weeks-old male apoE−/− mice on C57BL/6J genetic background were made diabetic with injections of streptozotocin (STZ). STZ-treated diabetic apoE−/− mice and non-diabetic control were fed with a synthetic high fat (HF) diet with or without LA supplementation. Multiple parameters including plasma glucose, cholesterol, oxidative stress markers, cytokines, and kidney cortex gene expression, and glomerular morphology were evaluated.
Results
LA supplementation markedly protected the beta cells and reduced cholesterol levels, attenuated albuminuria and glomerular mesangial expansion in the diabetic mice. Reno-protection by LA was equally effective regardless of whether the dietary supplementation was started 4 weeks before, simultaneously with, or 4 weeks after the induction of diabetes by STZ. LA supplementation significantly improved DN and oxidative stress in the diabetic mice. Severity of albuminuria was positively correlated with level of thiobarbituric acid reactive substances (TBARs) in the kidney (r2=0.62, P<0.05). Diabetes significantly changed the kidney expression of Rage, Sod2, Tgfb1 and Ctgf, Pdp2, nephrin and Lias. LA supplementation corrected these changes except that it further suppressed the expression of the Lias gene coding for lipoic acid synthase.
Conclusions
Our data indicate that LA supplementation effectively attenuates the development and progression of DN through its antioxidant effect as well as enhancing glucose oxidation.
doi:10.1016/j.jdiacomp.2010.07.004
PMCID: PMC3010318  PMID: 20801062
lipoic acid; antioxidants; oxidative stress; diabetes; diabetic nephropathy; apolipoprotein E null mice; streptozotocin
4.  Homocysteine-induced macrophage inflammatory protein-2 production by glomerular mesangial cells is mediated by PI3 Kinase and p38 MAPK 
Background
Homocysteine (Hcy) and inflammatory cytokines have been linked to adverse outcomes in persons with cardiovascular and kidney diseases and recent reports suggest that cytokine-mediated inflammatory infiltrates may be an important contributor to the pathogenesis the aforementioned diseases. Although some reports suggest that Hcy directly influences inflammatory cytokine production, this proposition has not been supported by data from other studies. The objective of the current study was to a) utilize an in vitro cellular model to identify cytokines that may be affected by Hcy and b) examine the role of mitogen activated protein kinase (MAPK) and phosphatidyl inositol 3- (PI3) Kinase in Hcy modulated cytokine production.
Methods
Primary rat glomerular mesangial cells (MC, passage 8 to 15), isolated by standard sieving methodology, were exposed to Hcy (15, 50 or 100 μM) with L-cysteine (L-Cys; 100 μM) serving as a control. An antibody array was used to identify cytokines that were modulated when MCs were exposed to Hcy. Gene expression was assessed by quantitative RT-PCR, while western blotting analysis was used to assess cellular protein levels in the presence and absence of inhibitors of MAPK and PI3 Kinase. Finally, leukocyte adhesion assay was used to examine the effect of Hcy on leukocyte adhesion to glomerular MCs that were maintained in media without, and with, kinase inhibitors.
Results
We identified macrophage inflammatory protein 2 (MIP-2) as a key cytokine that manifested increases in both protein and mRNA following exposure of glomerular MC to pathophysiologic Hcy levels (50 μM). Further analyses revealed that Hcy-induced MIP-2 was dependent on activation of p38 MAPK and PI3 kinase. MIP-2 enhanced leukocyte adhesion to MC and this MIP-2-enhanced leukocyte adhesion was also dependent on activation of p38 MAPK and PI3K. Finally, we demonstrate that leukocyte adhesion to MC is specifically inhibited by anit-MIP2 antibody.
Conclusion
The data suggest that Hcy participates in inflammatory cytokines production by glomerular MC and that Hcy-induced MIP-2 mediates leukocyte adhesion to MC.
doi:10.1186/1476-9255-6-27
PMCID: PMC2764696  PMID: 19781090

Results 1-4 (4)