Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X 
PLoS ONE  2013;8(8):e71755.
Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.
We addressed the gene expression signatures in colorectal cancer linked to Lynch syndrome and FCCTX with the aim to identify candidate genes and to map signaling pathways relevant in hereditary colorectal carcinogenesis.
Experimental design
The 18 k whole-genome c-DNA-mediated annealing, selection, extension, and ligation (WG-DASL) assay was applied to 123 colorectal cancers, including 39 Lynch syndrome tumors and 37 FCCTX tumors. Target genes were technically validated using real-time quantitative RT-PCR (qRT-PCR) and the expression signature was validated in independent datasets.
Colorectal cancers linked to Lynch syndrome and FCCTX showed distinct gene expression profiles, which by significance analysis of microarrays (SAM) differed by 2188 genes. Functional pathways involved were related to G-protein coupled receptor signaling, oxidative phosphorylation, and cell cycle function and mitosis. qRT-PCR verified altered expression of the selected genes NDUFA9, AXIN2, MYC, DNA2 and H2AFZ. Application of the 2188-gene signature to independent datasets showed strong correlation to MMR status.
Distinct genetic profiles and deregulation of different canonical pathways apply to Lynch syndrome and FCCTX and key targets herein may be relevant to pursue for refined diagnostic and therapeutic strategies in hereditary colorectal cancer.
PMCID: PMC3741139  PMID: 23951239
3.  Relation between smoking history and gene expression profiles in lung adenocarcinomas 
BMC Medical Genomics  2012;5:22.
Lung cancer is the worldwide leading cause of death from cancer. Tobacco usage is the major pathogenic factor, but all lung cancers are not attributable to smoking. Specifically, lung cancer in never-smokers has been suggested to represent a distinct disease entity compared to lung cancer arising in smokers due to differences in etiology, natural history and response to specific treatment regimes. However, the genetic aberrations that differ between smokers and never-smokers’ lung carcinomas remain to a large extent unclear.
Unsupervised gene expression analysis of 39 primary lung adenocarcinomas was performed using Illumina HT-12 microarrays. Results from unsupervised analysis were validated in six external adenocarcinoma data sets (n=687), and six data sets comprising normal airway epithelial or normal lung tissue specimens (n=467). Supervised gene expression analysis between smokers and never-smokers were performed in seven adenocarcinoma data sets, and results validated in the six normal data sets.
Initial unsupervised analysis of 39 adenocarcinomas identified two subgroups of which one harbored all never-smokers. A generated gene expression signature could subsequently identify never-smokers with 79-100% sensitivity in external adenocarcinoma data sets and with 76-88% sensitivity in the normal materials. A notable fraction of current/former smokers were grouped with never-smokers. Intriguingly, supervised analysis of never-smokers versus smokers in seven adenocarcinoma data sets generated similar results. Overlap in classification between the two approaches was high, indicating that both approaches identify a common set of samples from current/former smokers as potential never-smokers. The gene signature from unsupervised analysis included several genes implicated in lung tumorigenesis, immune-response associated pathways, genes previously associated with smoking, as well as marker genes for alveolar type II pneumocytes, while the best classifier from supervised analysis comprised genes strongly associated with proliferation, but also genes previously associated with smoking.
Based on gene expression profiling, we demonstrate that never-smokers can be identified with high sensitivity in both tumor material and normal airway epithelial specimens. Our results indicate that tumors arising in never-smokers, together with a subset of tumors from smokers, represent a distinct entity of lung adenocarcinomas. Taken together, these analyses provide further insight into the transcriptional patterns occurring in lung adenocarcinoma stratified by smoking history.
PMCID: PMC3447685  PMID: 22676229
Lung cancer; Smoking; Gene expression analysis; Adenocarcinoma; EGFR; Never-smokers; Immune response
4.  Experiences from treatment-predictive KRAS testing; high mutation frequency in rectal cancers from females and concurrent mutations in the same tumor 
KRAS mutations represent key alterations in colorectal cancer development and lead to constitutive EGFR signaling. Since EGFR inhibition represents a therapeutic strategy in advanced colorectal cancer, KRAS mutation analysis has quickly been introduced as a treatment-predictive test.
We used a real-time PCR based method to determine KRAS mutations in 136 colorectal cancers with mutations identified in 53 (39%) tumors.
KRAS mutations were significantly more often found in rectal cancer (21/38, 55%) than in colon cancer (32/98, 33%) (P = 0.02). This finding was explained by marked differences mutation rates in female patients who showed mutations in 33% of the colon cancers and in 67% of the rectal cancers (P = 0.01). Concurrent KRAS mutations were identified in three tumors; two colorectal cancers harbored Gly12Asp/Gly13Asp and Gly12Cys/Gly13Asp and a third tumor carried Gly12Cys/Gly12Asp in an adenomatous component and additionally acquired Gly12Val in the invasive component.
The demonstration of a particularly high KRAS mutation frequency among female rectal cancer patients suggests that this subset is the least likely to respond to anti-EGFR therapies, whereas the observation of concurrent KRAS mutations imply that repeated KRAS targeting may occur during tumor progression in a subset of colorectal cancers.
PMCID: PMC2766396  PMID: 19832985

Results 1-4 (4)